Beaulieu Marie-Eve, McDuff François-Olivier, Bédard Mikaël, Montagne Martin, Lavigne Pierre
Département de Pharmacologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
Methods Mol Biol. 2013;1012:7-20. doi: 10.1007/978-1-62703-429-6_2.
Specific heterodimerization and DNA binding by the b-HLH-LZ transcription factors c-Myc and Max is central to the activation and repression activities of c-Myc that lead to cell growth, proliferation, and tumorigenesis (Adhikary and Eilers, Nat Rev Mol Cell Biol 6:635-645, 2005; Eilers and Eisenman, Genes Dev 22:2755-2766, 2008; Grandori et al., Annu Rev Cell Dev Biol 16:653-699, 2000; Whitfield and Soucek, Cell Mol Life Sci 69:931-934, 2011). Although many c-Myc-interacting partner proteins are known to interact through their HLH domain (Adhikary and Eilers, Nat Rev Mol Cell Biol 6:635-645, 2005), current knowledge regarding the structure and the determinants of molecular recognition of these complexes is still very limited. Moreover, recent advances in the development and use of b-HLH-LZ dominant negatives (Soucek et al., Nature 455:679-683, 2008) and inhibitors of c-Myc interaction with its protein partners (Bidwell et al., J Control Release 135:2-10, 2009; Mustata et al., J Med Chem 52:1247-1250, 2009; Prochownik and Vogt, Genes Cancer 1:650-659, 2010) or DNA highlight the importance of efficient protocols to prepare such constructs and variants. Here, we provide methods to produce and purify high quantities of pure and untagged b-HLH-LZ constructs of c-Myc and Max as well as specific c-Myc/Max heterodimers for their biophysical and structural characterization by CD, NMR, or crystallography. Moreover, biochemical methods to analyze the homodimers and heterodimers as well as DNA binding of these constructs by native electrophoresis are presented. In addition to enable the investigation of the c-Myc/Max b-HLH-LZ complexes, the protocols described herein can be applied to the biochemical characterization of various mutants of either partner, as well as to ternary complexes with other partner proteins.
b-HLH-LZ转录因子c-Myc和Max的特异性异源二聚化及DNA结合,对于c-Myc的激活和抑制活性至关重要,而这些活性会导致细胞生长、增殖和肿瘤发生(阿迪卡里和艾勒斯,《自然综述:分子细胞生物学》6:635 - 645,2005;艾勒斯和艾森曼,《基因与发育》22:2755 - 2766,2008;格兰多里等人,《细胞与发育生物学年度综述》16:653 - 699,2000;惠特菲尔德和苏切克,《细胞与分子生命科学》69:931 - 934,2011)。尽管已知许多与c-Myc相互作用的伴侣蛋白通过其HLH结构域进行相互作用(阿迪卡里和艾勒斯,《自然综述:分子细胞生物学》6:635 - 645,2005),但目前关于这些复合物的结构以及分子识别决定因素的知识仍然非常有限。此外,b-HLH-LZ显性负性突变体(苏切克等人,《自然》455:679 - 683,2008)以及c-Myc与其蛋白伴侣相互作用的抑制剂(比德韦尔等人,《控制释放杂志》135:2 - 10,2009;穆斯塔塔等人,《药物化学杂志》52:1247 - 1250,2009;普罗乔尼克和沃格特,《基因与癌症》1:650 - 659,2010)或DNA在开发和使用方面的最新进展,凸显了制备此类构建体和变体的高效方案的重要性。在此,我们提供了生产和纯化大量纯净且无标签的c-Myc和Max的b-HLH-LZ构建体以及特定c-Myc/Max异源二聚体的方法,以便通过圆二色光谱(CD)、核磁共振(NMR)或晶体学对其进行生物物理和结构表征。此外,还介绍了通过非变性电泳分析这些构建体的同二聚体和异二聚体以及DNA结合的生化方法。除了能够研究c-Myc/Max b-HLH-LZ复合物外,本文所述方案还可应用于对任一伴侣的各种突变体以及与其他伴侣蛋白形成的三元复合物进行生化表征。