Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Física de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, 1428 Buenos Aires, Argentina.
J Chem Phys. 2013 Aug 28;139(8):084103. doi: 10.1063/1.4818755.
This work extends the concept of seniority number, which has been widely used for classifying N-electron Slater determinants, to wave functions of N electrons and spin S, as well as to N-electron spin-adapted Hilbert spaces. We propose a spin-free formulation of the seniority number operator and perform a study on the behavior of the expectation values of this operator under transformations of the molecular basis sets. This study leads to propose a quantitative evaluation for the convergence of the expansions of the wave functions in terms of Slater determinants. The non-invariant character of the seniority number operator expectation value of a wave function with respect to a unitary transformation of the molecular orbital basis set, allows us to search for a change of basis which minimizes that expectation value. The results found in the description of wave functions of selected atoms and molecules show that the expansions expressed in these bases exhibit a more rapid convergence than those formulated in the canonical molecular orbital bases and even in the natural orbital ones.
这项工作将已经被广泛用于分类 N 电子 Slater 行列式的能级数概念扩展到了 N 电子和自旋 S 的波函数,以及 N 电子自旋自适应 Hilbert 空间。我们提出了能级数算符的无自旋形式,并对该算符在分子基组变换下的期望值的行为进行了研究。这项研究导致了提出了一种对波函数在 Slater 行列式展开中的收敛性的定量评估。对于分子轨道基组的幺正变换,波函数的能级数算符期望值的不变性特征,允许我们寻找一个可以最小化该期望值的基组变换。在对选定原子和分子的波函数的描述中发现的结果表明,这些基组中表达的展开式比在规范分子轨道基组中甚至在自然轨道基组中表示的展开式具有更快的收敛速度。