Gajdacz Miroslav, Pedersen Poul L, Mørch Troels, Hilliard Andrew J, Arlt Jan, Sherson Jacob F
Danish National Research Foundation Center for Quantum Optics, Institut for Fysik og Astronomi, Aarhus Universitet, Ny Munkegade 120, 8000 Aarhus C, Denmark.
Rev Sci Instrum. 2013 Aug;84(8):083105. doi: 10.1063/1.4818913.
We describe an easily implementable method for non-destructive measurements of ultracold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. The signal-to-noise ratio is analyzed theoretically and, in the absence of experimental imperfections, the sensitivity limit is found to be identical to other conventional dispersive imaging techniques. The dependence on laser detuning, atomic density, and temperature is characterized in a detailed comparison with theory. Due to low destructiveness, spatially resolved images of the same cloud can be acquired up to 2000 times. The technique is applied to avoid the effect of shot-to-shot fluctuations in atom number calibration, to demonstrate single-run vector magnetic field imaging and single-run spatial imaging of the system's dynamic behavior. This demonstrates that the method is a useful tool for the characterization of static and dynamically changing properties of ultracold atomic clouds.
我们描述了一种基于空间分辨法拉第旋转的暗场成像对超冷原子云进行无损测量的易于实现的方法。从理论上分析了信噪比,并且在不存在实验缺陷的情况下,发现灵敏度极限与其他传统色散成像技术相同。通过与理论的详细比较,表征了对激光失谐、原子密度和温度的依赖性。由于破坏性低,同一原子云的空间分辨图像最多可采集2000次。该技术用于避免原子数校准中逐次波动的影响,以演示单次运行矢量磁场成像和系统动态行为的单次运行空间成像。这表明该方法是表征超冷原子云静态和动态变化特性的有用工具。