Suppr超能文献

通过 1-蒽甲醛还原氧化石墨烯合成羧酸功能化石墨烯纳米片,实现了铂纳米粒子的高分散。

Synthesis of carboxylate-functionalized graphene nanosheets for high dispersion of platinum nanoparticles based on the reduction of graphene oxide via 1-pyrenecarboxaldehyde.

机构信息

Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, 410114, People's Republic of China. State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China.

出版信息

Nanotechnology. 2013 Oct 4;24(39):395604. doi: 10.1088/0957-4484/24/39/395604. Epub 2013 Sep 6.

Abstract

A one-step reduction/functionalization strategy for the synthesis of carboxylate-functionalized graphene nanosheets is reported in this paper. 1-pyrenecarboxaldehyde (PCA) is introduced as a new reductant for the chemical reduction of graphene oxide (GO), serving three roles: reducing GO to graphene nanosheets (GNs), stabilizing the as-prepared GNs due to the electrostatic repulsion of the oxidation products of PCA (1-pyrenecarboxylate, PC⁻) on the surface of the GNs and anchoring Pt nanoparticles (Pt NPs) with high dispersion and small particle size. Transmission electron microscopy shows that Pt NPs with an average diameter of 1.3 ± 0.2 nm are uniformly dispersed on the surface of the PC⁻-functionalized GNs (PC⁻-GNs). The obtained Pt NPs/PC⁻-GNs nanohybrids have higher electrocatalytic activity and stability towards methanol oxidation in comparison with Pt NPs supported on GNs obtained by the chemical reduction of GO with the typical reductant, hydrazine.

摘要

本文报道了一种一步还原/功能化策略,用于合成羧酸功能化石墨烯纳米片。1-蒽甲醛(PCA)被引入作为氧化石墨烯(GO)的化学还原的新型还原剂,起到了三个作用:将 GO 还原为石墨烯纳米片(GNs),由于 PCA 的氧化产物(1-蒽甲酸盐,PC⁻)在 GNs 表面的静电排斥,稳定了所制备的 GNs,并且通过高分散性和小粒径固定 Pt 纳米颗粒(Pt NPs)。透射电子显微镜表明,Pt NPs 的平均直径为 1.3 ± 0.2nm,均匀分散在 PC⁻功能化 GNs(PC⁻-GNs)的表面上。与通过典型还原剂肼还原 GO 得到的负载在 GNs 上的 Pt NPs 相比,所得到的 Pt NPs/PC⁻-GNs 纳米杂化物对甲醇氧化具有更高的电催化活性和稳定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验