Jiang Bei, Carriere Keumhee C
Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2G1.
Stat Med. 2014 Feb 20;33(4):595-606. doi: 10.1002/sim.5970. Epub 2013 Sep 9.
Age-period-cohort (APC) models are used to analyze temporal trends in disease or mortality rates, dealing with linear dependency among associated effects of age, period, and cohort. However, the nature of sparseness in such data has severely limited the use of APC models. To deal with these practical limitations and issues, we advocate cubic smoothing splines. We show that the methods of estimable functions proposed in the framework of generalized linear models can still be considered to solve the non-identifiability problem when the model fitting is within the framework of generalized additive models with cubic smoothing splines. Through simulation studies, we evaluate the performance of the cubic smoothing splines in terms of the mean squared errors of estimable functions. Our results support the use of cubic smoothing splines for APC modeling with sparse but unaggregated data from a Lexis diagram.
年龄-时期-队列(APC)模型用于分析疾病或死亡率的时间趋势,处理年龄、时期和队列相关效应之间的线性依赖性。然而,此类数据的稀疏性严重限制了APC模型的使用。为了解决这些实际限制和问题,我们提倡使用三次平滑样条。我们表明,当模型拟合在具有三次平滑样条的广义相加模型框架内时,广义线性模型框架中提出的可估计函数方法仍可用于解决不可识别问题。通过模拟研究,我们根据可估计函数的均方误差评估三次平滑样条的性能。我们的结果支持使用三次平滑样条对来自列克西斯图的稀疏但未汇总的数据进行APC建模。