INRA, UR1268 Biopolymères Interactions Assemblages , 44316 Nantes, France.
Biomacromolecules. 2013 Oct 14;14(10):3599-609. doi: 10.1021/bm400967e. Epub 2013 Sep 24.
Understanding the hydrolysis process of lignocellulosic substrates remains a challenge in the biotechnology field. We aimed here at investigating the effect of substrate architecture on the enzymatic degradation process using two different multilayered model films composed of cellulose nanocrystals (CNCs) and xyloglucan (XG) chains. They were built by a spin-assisted layer-by-layer (LbL) approach and consisted either of (i) an alternation of CNC and XG layers or of (ii) layers of mixed (CNC/XG) complexes alternated with polycation layers. Neutron reflectivity (NR) was used to determine the architecture and composition of these films and to characterize their swelling in aqueous solution. The films displayed different [XG]/[CNC] ratios and swelling behavior. Enzymatic degradation of films was then performed and investigated by quartz crystal microbalance with dissipation monitoring (QCM-D). We demonstrated that some architectural features of the substrate, such as polysaccharide accessibility, porosity, and cross-links, influenced the enzymatic degradation.
了解木质纤维素基质的水解过程仍然是生物技术领域的一个挑战。我们旨在通过使用两种不同的由纤维素纳米晶体(CNC)和木葡聚糖(XG)链组成的多层模型膜来研究基质结构对酶降解过程的影响。这些模型膜是通过旋转辅助层层(LbL)方法构建的,要么由(i) CNC 和 XG 层交替组成,要么由(ii)混合(CNC/XG)配合物层与聚阳离子层交替组成。利用中子反射率(NR)来确定这些薄膜的结构和组成,并对其在水溶液中的溶胀进行表征。这些薄膜显示出不同的[XG]/[CNC]比例和溶胀行为。然后通过石英晶体微天平耗散监测(QCM-D)进行薄膜的酶降解实验并对其进行研究。我们证明了底物的一些结构特征,如多糖的可及性、孔隙率和交联度,影响了酶的降解。