Institut Langevin, ESPCI ParisTech, CNRS UMR 7587, INSERM U979, Université Paris Diderot, France.
Phys Med Biol. 2013 Oct 7;58(19):6765-78. doi: 10.1088/0031-9155/58/19/6765. Epub 2013 Sep 10.
Shear wave imaging (SWI) maps soft tissue elasticity by measuring shear wave propagation with ultrafast ultrasound acquisitions (10 000 frames s(-1)). This spatiotemporal data can be used as an input for an inverse problem that determines a shear modulus map. Common inversion methods are local: the shear modulus at each point is calculated based on the values of its neighbour (e.g. time-of-flight, wave equation inversion). However, these approaches are sensitive to the information loss such as noise or the lack of the backscattered signal. In this paper, we evaluate the benefits of a global approach for elasticity inversion using a least-squares formulation, which is derived from full waveform inversion in geophysics known as the adjoint method. We simulate an acoustic waveform in a medium with a soft and a hard lesion. For this initial application, full elastic propagation and viscosity are ignored. We demonstrate that the reconstruction of the shear modulus map is robust with a non-uniform background or in the presence of noise with regularization. Compared to regular local inversions, the global approach leads to an increase of contrast (∼+3 dB) and a decrease of the quantification error (∼+2%). We demonstrate that the inversion is reliable in the case when there is no signal measured within the inclusions like hypoechoic lesions which could have an impact on medical diagnosis.
剪切波成像(SWI)通过使用超快超声采集(10,000 帧/秒)测量剪切波传播来绘制软组织弹性。该时空数据可作为反问题的输入,反问题确定剪切模量图。常见的反演方法是局部的:在每个点的剪切模量是基于其邻居的值计算(例如,飞行时间,波动方程反演)。然而,这些方法对信息丢失(如噪声或背散射信号的缺乏)很敏感。在本文中,我们使用最小二乘公式评估了基于全波形反演的全局方法在弹性反演中的优势,该公式源自地球物理学中的伴随方法。我们在具有软和硬病变的介质中模拟声学波形。对于这个初始应用,完全弹性传播和粘性被忽略。我们证明了在具有正则化的不均匀背景或存在噪声的情况下,剪切模量图的重建是稳健的。与常规局部反演相比,全局方法导致对比度增加(约+3dB),定量误差降低(约+2%)。我们证明了在没有在包含物(如可能影响医学诊断的低回声病变)内测量到信号的情况下,反演是可靠的。