Suppr超能文献

Whole-cell currents in macrophages: II. Alveolar macrophages.

作者信息

Nelson D J, Jow B, Popovich K J

机构信息

Department of Medicine, University of Chicago, Illinois 60637.

出版信息

J Membr Biol. 1990 Jul;117(1):45-55. doi: 10.1007/BF01871564.

Abstract

Although an outwardly rectifying K+ conductance has been described in murine peritoneal macrophages and a murine macrophage cell line, the expression of this conductance in human monocyte-derived macrophages (HMDMs) is rare. Whole-cell current recordings in this study were obtained from HMDMs differentiated in adherent culture for varying periods of time following isolation and compared to currents obtained in human alveolar macrophages (HAMs) obtained from bronchoalveolar lavage. These studies were undertaken to compare ionic current expression in the in vitro differentiated macrophage to that of a human tissue macrophage. HAMs are the major population of immune and inflammatory cells in the normal lung and are the most readily available source of human tissue macrophages. Of the 974 HMDMs in the study obtained from a total of 36 donors, we were able to observe the presence of the inactivating outward current (IA) which exhibited voltage-dependent availability in only 49 (or 5%) of the cells. In contrast, whole-cell current recordings from HAMs, revealed a significantly higher frequency of IA expression (50% in a total of 160 cells from 26 donors). In the alveolar cell, there was no correlation observed between cell size and peak IA amplitude, nor was there a relationship between peak IA amplitude and time in culture. The current in both cell types was K+ selective and 4-aminopyridine (4-AP) sensitive. IA in both cell types inactivated with a time course which was weakly voltage-dependent and which exhibited a time constant of recovery from inactivation of approximately 30 sec. The time course of current inactivation was dependent upon the external K+ concentration. An increase in the time constant describing current decay was observed in elevated K+. Current activation was half-maximal at approximately -18 mV in normal bathing solution. Steady-state inactivation was half-maximal at approximately -44 mV. The presence of the outwardly rectifying K+ conductance may alter the potential of the mononuclear phagocyte to respond to extracellular signals mediating chemotaxis, phagocytosis, and tumoricidal functions.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验