Suppr超能文献

用小分子降低有毒RNA水平。

Reducing levels of toxic RNA with small molecules.

作者信息

Coonrod Leslie A, Nakamori Masayuki, Wang Wenli, Carrell Samuel, Hilton Cameron L, Bodner Micah J, Siboni Ruth B, Docter Aaron G, Haley Michael M, Thornton Charles A, Berglund J Andrew

机构信息

Institute of Molecular Biology and §Department of Chemistry and Biochemistry, University of Oregon , Eugene, Oregon 97403, United States.

出版信息

ACS Chem Biol. 2013 Nov 15;8(11):2528-37. doi: 10.1021/cb400431f. Epub 2013 Sep 27.

Abstract

Myotonic dystrophy (DM) is one of the most common forms of muscular dystrophy. DM is an autosomal dominant disease caused by a toxic gain of function RNA. The toxic RNA is produced from expanded noncoding CTG/CCTG repeats, and these CUG/CCUG repeats sequester the Muscleblind-like (MBNL) family of RNA binding proteins. The MBNL proteins are regulators of alternative splicing, and their sequestration has been linked with mis-splicing events in DM. A previously reported screen for small molecules found that pentamidine was able to improve splicing defects associated with DM. Biochemical experiments and cell and mouse model studies of the disease indicate that pentamidine and related compounds may work through binding the CTG*CAG repeat DNA to inhibit transcription. Analysis of a series of methylene linker analogues of pentamidine revealed that heptamidine reverses splicing defects and rescues myotonia in a DM1 mouse model.

摘要

强直性肌营养不良(DM)是最常见的肌营养不良形式之一。DM是一种由功能获得性毒性RNA引起的常染色体显性疾病。毒性RNA由扩展的非编码CTG/CCTG重复序列产生,这些CUG/CCUG重复序列隔离了肌肉失明样(MBNL)RNA结合蛋白家族。MBNL蛋白是可变剪接的调节因子,它们的隔离与DM中的错误剪接事件有关。先前报道的一项小分子筛选发现,喷他脒能够改善与DM相关的剪接缺陷。该疾病的生化实验以及细胞和小鼠模型研究表明,喷他脒及相关化合物可能通过结合CTG*CAG重复DNA来抑制转录。对喷他脒的一系列亚甲基连接体类似物的分析表明,庚脒可逆转DM1小鼠模型中的剪接缺陷并挽救肌强直。

相似文献

1
Reducing levels of toxic RNA with small molecules.
ACS Chem Biol. 2013 Nov 15;8(11):2528-37. doi: 10.1021/cb400431f. Epub 2013 Sep 27.
2
Pentamidine reverses the splicing defects associated with myotonic dystrophy.
Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18551-6. doi: 10.1073/pnas.0903234106. Epub 2009 Oct 12.
3
Furamidine Rescues Myotonic Dystrophy Type I Associated Mis-Splicing through Multiple Mechanisms.
ACS Chem Biol. 2018 Sep 21;13(9):2708-2718. doi: 10.1021/acschembio.8b00646. Epub 2018 Aug 27.
4
(CCUG) RNA toxicity in a model of myotonic dystrophy type 2 (DM2) activates apoptosis.
Dis Model Mech. 2017 Aug 1;10(8):993-1003. doi: 10.1242/dmm.026179. Epub 2017 Jun 16.
5
Biological Efficacy and Toxicity of Diamidines in Myotonic Dystrophy Type 1 Models.
J Med Chem. 2015 Aug 13;58(15):5770-80. doi: 10.1021/acs.jmedchem.5b00356. Epub 2015 Jul 21.
6
A CTG repeat-selective chemical screen identifies microtubule inhibitors as selective modulators of toxic CUG RNA levels.
Proc Natl Acad Sci U S A. 2019 Oct 15;116(42):20991-21000. doi: 10.1073/pnas.1901893116. Epub 2019 Sep 30.
7
Rationally designed small molecules that target both the DNA and RNA causing myotonic dystrophy type 1.
J Am Chem Soc. 2015 Nov 11;137(44):14180-9. doi: 10.1021/jacs.5b09266. Epub 2015 Nov 3.
8
Pentamidine rescues contractility and rhythmicity in a Drosophila model of myotonic dystrophy heart dysfunction.
Dis Model Mech. 2015 Dec;8(12):1569-78. doi: 10.1242/dmm.021428. Epub 2015 Oct 29.
10
Development of pharmacophore models for small molecules targeting RNA: Application to the RNA repeat expansion in myotonic dystrophy type 1.
Bioorg Med Chem Lett. 2016 Dec 1;26(23):5792-5796. doi: 10.1016/j.bmcl.2016.10.037. Epub 2016 Oct 13.

引用本文的文献

2
Molecular genetics of myotonic dystrophy and the evolution of therapeutic approaches.
J Hum Genet. 2025 Jul 3. doi: 10.1038/s10038-025-01358-6.
3
Functions of the Muscleblind-like protein family and their role in disease.
Cell Commun Signal. 2025 Feb 18;23(1):97. doi: 10.1186/s12964-025-02102-5.
4
The evolution and application of RNA-focused small molecule libraries.
RSC Chem Biol. 2025 Feb 13;6(4):510-527. doi: 10.1039/d4cb00272e. eCollection 2025 Apr 2.
5
L-Carnitine Functionalization to Increase Skeletal Muscle Tropism of PLGA Nanoparticles.
Int J Mol Sci. 2022 Dec 24;24(1):294. doi: 10.3390/ijms24010294.
7
Molecular Therapies for Myotonic Dystrophy Type 1: From Small Drugs to Gene Editing.
Int J Mol Sci. 2022 Apr 21;23(9):4622. doi: 10.3390/ijms23094622.
8
Molecular characterization of myotonic dystrophy fibroblast cell lines for use in small molecule screening.
iScience. 2022 Apr 4;25(5):104198. doi: 10.1016/j.isci.2022.104198. eCollection 2022 May 20.
9
Myotonic Dystrophies: A Genetic Overview.
Genes (Basel). 2022 Feb 17;13(2):367. doi: 10.3390/genes13020367.
10
Brain Pathogenesis and Potential Therapeutic Strategies in Myotonic Dystrophy Type 1.
Front Aging Neurosci. 2021 Nov 15;13:755392. doi: 10.3389/fnagi.2021.755392. eCollection 2021.

本文引用的文献

1
RNA splicing is responsive to MBNL1 dose.
PLoS One. 2012;7(11):e48825. doi: 10.1371/journal.pone.0048825. Epub 2012 Nov 15.
2
Transcriptome-wide regulation of pre-mRNA splicing and mRNA localization by muscleblind proteins.
Cell. 2012 Aug 17;150(4):710-24. doi: 10.1016/j.cell.2012.06.041.
3
Targeting nuclear RNA for in vivo correction of myotonic dystrophy.
Nature. 2012 Aug 2;488(7409):111-5. doi: 10.1038/nature11362.
5
RNase H-mediated degradation of toxic RNA in myotonic dystrophy type 1.
Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4221-6. doi: 10.1073/pnas.1117019109. Epub 2012 Feb 27.
6
Spt4 is selectively required for transcription of extended trinucleotide repeats.
Cell. 2012 Feb 17;148(4):690-701. doi: 10.1016/j.cell.2011.12.032.
7
Rationally designed small molecules targeting the RNA that causes myotonic dystrophy type 1 are potently bioactive.
ACS Chem Biol. 2012 May 18;7(5):856-62. doi: 10.1021/cb200408a. Epub 2012 Mar 5.
9
Autoregulated splicing of muscleblind-like 1 (MBNL1) Pre-mRNA.
J Biol Chem. 2011 Sep 30;286(39):34224-33. doi: 10.1074/jbc.M111.236547. Epub 2011 Aug 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验