Suppr超能文献

采用 Box-Behnken 设计和可满意度函数优化替米沙坦自微乳给药系统。

Optimization of self-microemulsifying drug delivery system for telmisartan using Box-Behnken design and desirability function.

机构信息

College of Pharmacy, Yeungnam University, Gyungbuk, South Korea.

出版信息

J Pharm Pharmacol. 2013 Oct;65(10):1440-50. doi: 10.1111/jphp.12115. Epub 2013 Jul 24.

Abstract

OBJECTIVES

To develop and optimize the novel self-microemulsifying drug delivery system (SMEDDS) formulation for enhanced water solubility and bioavailability of telmisartan (TMS) using the Box-Behnken design (BBD) and desirability function.

METHOD

TMS-SMEDDS formulation consisted of the mixture of oil (Peceol), surfactant (Labrasol), co-surfactant (Transcutol), TMS and triethanolamine. A three-level BBD was applied to explore the main effect, interaction effect and quadratic effect of three independent variables, including the amount of Peceol (X1 ), Labrasol (X2 ) and Transcutol (X3 ). Determined conditions were 20 < X1  < 40, 50 < X2  < 80 and 5 < X3  < 30. The response variables were droplet size (Y1 ), polydispersity index (Y2 ) and dissolution percentage of TMS after 15 min (Y3 ).

KEY FINDINGS

The optimized conditions were 28.93, 80 and 28.08 (mg) for X1 , X2 and X3 , respectively, and the response variables were predicted to be 159.8 nm, 0.241 and 85.8% for Y1 , Y2 and Y3 , respectively. The actual values from the optimized formulation showed good agreement with predicted values. The optimized TMS-SMEDDS formulation showed faster drug dissolution rate and higher bioavailability than TMS powder.

CONCLUSIONS

Our results suggest that response surface methodology using BBD and desirability function is a promising approach to understand the effect of SMEDDS variables and to optimize the formulation.

摘要

目的

使用 Box-Behnken 设计(BBD)和理想函数,开发和优化新型自微乳给药系统(SMEDDS)制剂,以提高替米沙坦(TMS)的水溶性和生物利用度。

方法

TMS-SMEDDS 制剂由油(Peceol)、表面活性剂(Labrasol)、助表面活性剂(Transcutol)、TMS 和三乙醇胺组成。采用三水平 BBD 来探索三个独立变量(包括 Peceol 用量(X1)、Labrasol 用量(X2)和 Transcutol 用量(X3))的主要影响、相互作用和二次影响。确定的条件为 20<X1<40、50<X2<80 和 5<X3<30。响应变量为液滴大小(Y1)、多分散指数(Y2)和 TMS 在 15 分钟后的溶解百分比(Y3)。

主要发现

优化条件分别为 X1、X2 和 X3 的 28.93、80 和 28.08(mg),响应变量分别预测为 Y1、Y2 和 Y3 的 159.8nm、0.241 和 85.8%。优化制剂的实际值与预测值吻合良好。优化的 TMS-SMEDDS 制剂显示出比 TMS 粉末更快的药物溶解速率和更高的生物利用度。

结论

我们的结果表明,使用 BBD 和理想函数的响应面法是一种有前途的方法,可以了解 SMEDDS 变量的影响,并优化制剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验