Holland Alexandra D, Rückerl Florian, Dragavon Joseph M, Rekiki Abdessalem, Tinevez Jean-Yves, Tournebize Régis, Shorte Spencer L
Plate-Forme d'Imagerie Dynamique, Imagopole, Institut Pasteur, 25-28 Rue du Dr. Roux, 75724 Paris cedex 15, France.
Plate-Forme d'Imagerie Dynamique, Imagopole, Institut Pasteur, 25-28 Rue du Dr. Roux, 75724 Paris cedex 15, France; Unité INSERM U786, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex 15, France.
Methods. 2014 Mar 15;66(2):353-61. doi: 10.1016/j.ymeth.2013.09.005. Epub 2013 Sep 14.
Energy transfer mechanisms represent the basis for an array of valuable tools to infer interactions in vitro and in vivo, enhance detection or resolve interspecies distances such as with resonance. Based upon our own previously published studies and new results shown here we present a novel framework describing for the first time a model giving a view of the biophysical relationship between Fluorescence by Unbound Excitation from Luminescence (FUEL), a conventional radiative excitation-emission process, and bioluminescence resonance energy transfer. We show here that in homogeneous solutions and in fluorophore-targeted bacteria, FUEL is the dominant mechanism responsible for the production of red-shifted photons. The minor resonance contribution was ascertained by comparing the intensity of the experimental signal to its theoretical resonance counterpart. Distinctive features of the in vitro FUEL signal include a macroscopic depth dependency, a lack of enhancement upon targeting at a constant fluorophore concentration cf and a non-square dependency on cf. Significantly, FUEL is an important, so far overlooked, component of all resonance phenomena which should guide the design of appropriate controls when elucidating interactions. Last, our results highlight the potential for FUEL as a means to enhance in vivo and in vitro detection through complex media while alleviating the need for targeting.
能量转移机制是一系列用于推断体外和体内相互作用、增强检测或解析种间距离(如通过共振)的有价值工具的基础。基于我们之前发表的研究以及此处展示的新结果,我们提出了一个新颖的框架,首次描述了一个模型,该模型展示了来自发光的未结合激发荧光(FUEL,一种传统的辐射激发 - 发射过程)与生物发光共振能量转移之间的生物物理关系。我们在此表明,在均相溶液和荧光团靶向的细菌中,FUEL是产生红移光子的主要机制。通过将实验信号强度与其理论共振对应物进行比较,确定了较小的共振贡献。体外FUEL信号的独特特征包括宏观深度依赖性、在荧光团浓度cf恒定的情况下靶向时信号无增强以及对cf的非平方依赖性。重要的是,FUEL是所有共振现象中一个重要但迄今被忽视的组成部分,在阐明相互作用时应指导适当对照的设计。最后,我们的结果突出了FUEL作为一种通过复杂介质增强体内和体外检测同时减少靶向需求的手段的潜力。