Rudolph R, Holler E, Jaenicke R
Biophys Chem. 1975 Jul;3(3):226-33. doi: 10.1016/0301-4622(75)80014-7.
In order to characterize the isomerization of serumalbumin in the acidic pH-range equilibrium and kinetic measurements of the intrinsic fluorescence of bovine serumalbumin and human serumalbumin were performed. Additional experiments with modified bovine serumalbumin made use of substituted 1.9 benzoxanthene dyes as SH-specific extrinsic fluorophores. The intrinsic fluorescence (lambda exc = 275 nm) shows a pH-dependent shift of the maximum of fluorescence emissions which correlates with the N in equilibrium F isomerization. This and the acid expansion at pH less than 3.5 is indicated by the pH-dependence of the fluorescence intensity at 350 nm. While tyrosine fluorescence is increased in all steps of the transition, tryptophane fluorescence is decreased in a different way for BSA (2 trp/molecule) and HSA (1 trp/molecule), the latter showing the N in equilibrium F transition only. Combining the tryptophan fluorescence data with the results from the SH-specific modification of BSA the conclusion may be drawn that the tryptophan residues in BSA and the SH-group belong to different domains of the molecule. Stopped-flow experiments prove the N in equilibrium F' and the F' in equilibrium F transitions to be separable along the time axis, the relaxation times being in the range between 40-50 and 300-600 msec respectively. For the "expansion" the kinetic constants critically depend on the initial pH conditions of the solutions. The backward reaction F leads to N seems to be a multistep isomerization process which is characterized by relaxation times greater than 1 sec.
为了表征血清白蛋白在酸性pH范围内的异构化,对牛血清白蛋白和人血清白蛋白的固有荧光进行了平衡和动力学测量。使用取代的1,9-苯并氧杂蒽染料作为SH特异性外在荧光团,对修饰的牛血清白蛋白进行了额外的实验。固有荧光(激发波长λ = 275 nm)显示荧光发射最大值的pH依赖性位移,这与平衡F异构化中的N相关。350 nm处荧光强度的pH依赖性表明了这一点以及pH小于3.5时的酸膨胀。虽然在转变的所有步骤中酪氨酸荧光都增加,但牛血清白蛋白(每分子2个色氨酸)和人血清白蛋白(每分子1个色氨酸)的色氨酸荧光以不同方式降低,后者仅显示平衡F转变中的N。将色氨酸荧光数据与牛血清白蛋白SH特异性修饰的结果相结合,可以得出结论,牛血清白蛋白中的色氨酸残基和SH基团属于分子的不同结构域。停流实验证明,平衡F'中的N和平衡F中的F'转变在时间轴上是可分离的,弛豫时间分别在40 - 50毫秒和300 - 600毫秒之间。对于“膨胀”,动力学常数严重依赖于溶液的初始pH条件。向后反应F生成N似乎是一个多步异构化过程,其特征是弛豫时间大于1秒。