Trainotti Susanne, Raith Stefan, Kesting Marco, Eichhorn Stefan, Bauer Florian, Kolk Andreas, Lethaus Bernd, Hölzle Frank, Steiner Timm
Department of Oral and Maxillofacial Surgery, Universitätsklinikum Aachen, RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany.
Department of Oral and Maxillofacial Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.
Clin Oral Investig. 2014 May;18(4):1291-1298. doi: 10.1007/s00784-013-1105-1. Epub 2013 Sep 22.
The main goal of the present study was to compare the biomechanical stability of locking plates and conventional miniplate combinations in human mandibles reconstructed with fibular grafts.
A specially developed and well-proven testing device reproduced the in vivo loading conditions on the mandible. Cadaveric human mandibles (n = 12) reconstructed with harvested human fibular bone grafts were divided into two groups, and different osteosynthesis systems were applied using two lines of plates per osteotomy. On the test apparatus, the specimens were stressed to failure, and interfragmentary movement was monitored and quantified with a contact-free optical measurement system.
The relevant interfragmentary movement results from a Euclidean summary calculation which considered all three spatial angles around the axes. Using values up to a maximum load of 300 N, the conventional six-hole miniplates (profile 1.0) had an average value of 7.45° ± 1.46°, and the locking six-hole plates (profile 1.3) had an average value of 12.16° ± 2.37° for rotational interfragmentary movement. The miniplate system exhibited a significantly superior performance in fixation compared to the fixed-angle system (p < 0.05).
According to these biomechanical experiments, both osteosynthesis devices provided sufficient stabilization at loads of up to 300 N. The six-hole miniplate system provided better stabilization of the osteotomy gap for mandibles reconstructed with fibular grafts.
The osteosynthesis system is essential for primary stability and the avoidance of pseudarthrosis formation. This study demonstrates that the miniplates provide sufficient stabilization and offers a method to improve fixation in reconstructed mandibles.
本研究的主要目的是比较锁定钢板与传统微型钢板组合在腓骨移植重建的人体下颌骨中的生物力学稳定性。
一种专门开发且经过充分验证的测试装置可再现下颌骨的体内加载条件。将用采集的人腓骨骨移植重建的尸体人下颌骨(n = 12)分为两组,每个截骨部位使用两行钢板应用不同的骨固定系统。在测试装置上,对标本施加应力直至破坏,并用非接触式光学测量系统监测和量化骨折块间运动。
相关的骨折块间运动结果来自欧几里得汇总计算,该计算考虑了围绕轴的所有三个空间角度。在最大载荷达300 N时,传统的六孔微型钢板(型材1.0)的骨折块间旋转运动平均值为7.45°±1.46°,锁定六孔钢板(型材1.3)的平均值为12.16°±2.37°。与固定角度系统相比,微型钢板系统在固定方面表现出明显更优的性能(p < 0.05)。
根据这些生物力学实验,两种骨固定装置在高达300 N的载荷下均提供了足够的稳定性。六孔微型钢板系统为腓骨移植重建的下颌骨截骨间隙提供了更好的稳定性。
骨固定系统对于初始稳定性和避免假关节形成至关重要。本研究表明,微型钢板提供了足够的稳定性,并提供了一种改善重建下颌骨固定的方法。