Zimmermann Jörg, Romesberg Floyd E
Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
Methods Mol Biol. 2014;1084:101-19. doi: 10.1007/978-1-62703-658-0_6.
Vibrational spectroscopy is uniquely able to characterize protein dynamics and microenvironmental heterogeneity because it possesses an inherently high temporal resolution and employs probes of ultimately high structural resolution-the bonds themselves. The use of carbon-deuterium (C-D) bonds as vibrational labels circumvents the spectral congestion that otherwise precludes the use of vibrational spectroscopy to proteins and makes the observation of single vibrations within a protein possible while being wholly non-perturbative. Thus, C-D probes can be used to site-specifically characterize conformational heterogeneity and thermodynamic stability. C-D probes are also uniquely useful in characterizing the electrostatic microenvironment experienced by a specific residue side chain or backbone due to its effect on the C-D absorption frequency. In this chapter we describe the experimental procedures required to use C-D bonds and FT IR spectroscopy to characterize protein dynamics, structural and electrostatic heterogeneity, ligand binding, and folding.
振动光谱能够独特地表征蛋白质动力学和微环境异质性,因为它具有固有的高时间分辨率,并采用具有极高结构分辨率的探针——化学键本身。使用碳 - 氘(C - D)键作为振动标记可避免光谱重叠,否则光谱重叠会妨碍将振动光谱用于蛋白质研究,并且能够在完全无干扰的情况下实现对蛋白质内单个振动的观测。因此,C - D探针可用于位点特异性地表征构象异质性和热力学稳定性。由于C - D探针会影响C - D吸收频率,所以它在表征特定残基侧链或主链所经历的静电微环境方面也具有独特的用途。在本章中,我们将描述使用C - D键和傅里叶变换红外光谱(FT IR)来表征蛋白质动力学、结构和静电异质性、配体结合以及折叠所需的实验步骤。