Faculty of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, VIC 3030, Australia.
Bone. 2013 Dec;57(2):392-8. doi: 10.1016/j.bone.2013.09.006. Epub 2013 Sep 21.
In racehorses, fatigue related subchondral bone injury leads to overt fracture or articular surface collapse and subsequent articular cartilage degeneration. We hypothesised that the fatigue behaviour of equine subchondral bone in compression follows a power law function similar to that observed in cortical and trabecular bone. We determined the fatigue life of equine metacarpal subchondral bone in-vitro and investigated the factors influencing initial bone stiffness. Subchondral bone specimens were loaded cyclically in compression [54MPa (n=6), 66MPa (n=6), 78MPa (n=5), and 90MPa (n=6)] until failure. The fatigue life curve was determined by linear regression from log transformed number of cycles to failure and load. A general linear model was used to investigate the influence of the following variables on initial Young's Modulus: age (4-8years), specimen storage time (31-864days), time in training since most recent rest period (6-32weeks), limb, actual density (1.6873-1.8684g/cm(3)), subchondral bone injury grade (0-3), and cause of death (fatigue injury vs. other). Number of cycles to failure was (median, range) 223,603, 78,316-806,792 at 54MPa; 69,908, 146-149,855 at 66MPa; 13204, 614-16,425 at 78MPa (n=3); and 4001, 152-11,568 at 90MPa. The fatigue life curve was σ=112.2-9.6 log10Nf, (R(2)=0.52, P<0.001), where Nf is number of cycles to failure and σ is load. Removal of the three horses with the highest SCBI grade resulted in: σ=134.2-14.1 log10Nf, (R(2)=0.72, P<0.001). Initial Young's Modulus (mean±SD) was 2500±494MPa (n=22). Actual density (ρ) was the only variable retained in the model to describe initial Young's Modulus (E): E=-8196.7+5880.6ρ, (R(2)=0.34, P=0.0044). The fatigue behaviour of equine subchondral bone in compression is similar to that of cortical and trabecular bone. These data can be used to model the development of SCBI to optimize training regimes.
在赛马中,与疲劳相关的软骨下骨损伤导致明显的骨折或关节面塌陷,随后导致关节软骨退化。我们假设马的软骨下骨在压缩下的疲劳行为遵循幂律函数,类似于皮质骨和小梁骨观察到的情况。我们确定了马掌跖骨软骨下骨的体外疲劳寿命,并研究了影响初始骨刚度的因素。软骨下骨标本在压缩下循环加载[54MPa(n=6),66MPa(n=6),78MPa(n=5)和 90MPa(n=6)]直至失效。通过对数转换后的失效循环数和载荷的线性回归确定疲劳寿命曲线。使用一般线性模型研究以下变量对初始杨氏模量的影响:年龄(4-8 岁),标本储存时间(31-864 天),自最近休息期以来的训练时间(6-32 周),肢体,实际密度(1.6873-1.8684g/cm(3)),软骨下骨损伤等级(0-3)和死亡原因(疲劳损伤与其他)。失效的循环次数(中位数,范围)为 54MPa 时为 223603,78316-806792;66MPa 时为 69908,146-149855;78MPa 时为 13204,614-16425(n=3);90MPa 时为 4001,152-11568。疲劳寿命曲线为 σ=112.2-9.6log10Nf,(R(2)=0.52,P<0.001),其中 Nf 是失效的循环次数,σ 是载荷。去除软骨下骨损伤等级最高的三匹马后:σ=134.2-14.1log10Nf,(R(2)=0.72,P<0.001)。初始杨氏模量(平均值±SD)为 2500±494MPa(n=22)。实际密度(ρ)是唯一保留在模型中描述初始杨氏模量(E)的变量:E=-8196.7+5880.6ρ,(R(2)=0.34,P=0.0044)。马软骨下骨在压缩下的疲劳行为与皮质骨和小梁骨相似。这些数据可用于模拟软骨下骨病变的发展,以优化训练方案。