Suppr超能文献

动态原子力显微镜中单循环和瞬态力测量。

Single cycle and transient force measurements in dynamic atomic force microscopy.

机构信息

Laboratory for Energy and Nanoscience (LENS), Center for Future Energy Systems (iFES), Masdar Institute of Science and Technology, Abu Dhabi, 54224, United Arab Emirates.

出版信息

Nanoscale. 2013 Nov 21;5(22):10776-93. doi: 10.1039/c3nr03338d. Epub 2013 Sep 26.

Abstract

The monitoring of the deflection of a micro-cantilever, as the end of a sharp probe mounted at its end, i.e. the tip, interacts with a surface, forms the foundation of atomic force microscopy AFM. In a nutshell, developments in the field are driven by the requirement of obtaining ever increasing throughput and sensitivity, and enhancing the versatility of the instrument to simultaneously map the topography and quantify nanoscale processes and properties. In the most common dynamic mode of operation, the motion of the driven cantilever is monitored at a single point on its longitudinal axis. Here, we show that from this single point a waveform is obtained that contains all the details about conservative and dissipative interactions. Then a formalism that accounts for multiple arbitrary flexural modes is developed for an indirectly driven cantilever. The formalism is shown to allow recovery of the details of the interaction even in the presence of complex and relevant hysteretic forces when the cantilever oscillates in the steady state. In a different approach, we develop a formalism that monitors the wave profile of the cantilever, i.e. the waveform at five different points on its longitudinal axis. With this formalism the interaction can be reconstructed during a single oscillation cycle even in the transient state of oscillation. Finally, we discuss the potential and advantages of the proposed methods and future technical challenges. Other standard and state of the art techniques and methods are also discussed and compared with the ones presented here. This work should also provide insight into the current high throughput-high sensitivity developments dealing with multifrequency dynamic AFM where information is recovered from multiple eigenmodes.

摘要

微悬臂梁的挠度监测,作为安装在其末端的尖锐探针的末端,即尖端,与表面相互作用,构成原子力显微镜 AFM 的基础。简而言之,该领域的发展是由不断提高吞吐量和灵敏度的要求以及增强仪器的多功能性以同时绘制形貌和量化纳米级过程和特性的要求驱动的。在最常见的动态操作模式下,驱动悬臂梁的运动在其纵轴上的单点进行监测。在这里,我们表明,从这个单点可以获得一个包含关于保守和耗散相互作用的所有细节的波形。然后,为间接驱动悬臂梁开发了一个考虑多个任意弯曲模式的形式主义。该形式主义被证明即使在悬臂梁在稳态下振荡时存在复杂且相关的滞后力,也可以恢复相互作用的细节。在另一种方法中,我们开发了一种形式主义,用于监测悬臂梁的波型,即在其纵轴上的五个不同点的波型。使用这个形式主义,即使在振荡的瞬态状态下,也可以在单个振荡周期内重建相互作用。最后,我们讨论了所提出的方法的潜力和优势以及未来的技术挑战。还讨论了其他标准和最先进的技术和方法,并将其与这里提出的方法进行了比较。这项工作还应该深入了解当前涉及多频动态 AFM 的高吞吐量-高灵敏度发展,在多频动态 AFM 中,信息是从多个本征模式中恢复的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验