Laboratoire de Probabilités et Modèles Aléatoires, University Paris Diderot, 75205 Paris Cedex 13, France.
Phys Rev Lett. 2013 Sep 13;111(11):113902. doi: 10.1103/PhysRevLett.111.113902.
We predict theoretically and numerically the existence of incoherent dispersive shock waves. They manifest themselves as an unstable singular behavior of the spectrum of incoherent waves that evolve in a noninstantaneous nonlinear environment. This phenomenon of "spectral wave breaking" develops in the weakly nonlinear regime of the random wave. We elaborate a general theoretical formulation of these incoherent objects on the basis of a weakly nonlinear statistical approach: a family of singular integro-differential kinetic equations is derived, which provides a detailed deterministic description of the incoherent dispersive shock wave phenomenon.
我们从理论和数值上预测了非相干弥散激波的存在。它们表现为非瞬时非线性环境中演化的非相干波谱的不稳定奇异行为。这种“谱波破裂”现象在随机波的弱非线性区域发展。我们基于弱非线性统计方法详细阐述了这些非相干对象的一般理论公式:推导出了一族奇异积分微分运动方程,为非相干弥散激波现象提供了详细的确定性描述。