Suppr超能文献

基于多方向滤波器的噪声感知图像去卷积

Noise-aware image deconvolution with multidirectional filters.

作者信息

Yang Hang, Zhu Ming, Huang Heyan, Zhang Zhongbo

出版信息

Appl Opt. 2013 Sep 20;52(27):6792-8. doi: 10.1364/AO.52.006792.

Abstract

In this paper we propose an approach for handling noise in deconvolution algorithm based on multidirectional filters. Most image deconvolution techniques are sensitive to the noise. Even a small amount of noise will degrade the quality of image estimation dramatically. We found that by applying a directional low-pass filter to the blurred image, we can reduce the noise level while preserving the blur information in the orthogonal direction to the filter. So we apply a series of directional filters at different orientations to the blurred image, and a guided filter based edge-preserving image deconvolution is used to estimate an accurate Radon transform of the clear image from each filtered image. Finally, we reconstruct the original image using the inverse Radon transform. We compare our deconvolution algorithm with many competitive deconvolution techniques in terms of the improvement in signal-to-noise ratio and visual quality.

摘要

在本文中,我们提出了一种基于多方向滤波器的反卷积算法中处理噪声的方法。大多数图像反卷积技术对噪声敏感。即使是少量噪声也会显著降低图像估计的质量。我们发现,通过对模糊图像应用方向低通滤波器,可以在保留与滤波器正交方向上的模糊信息的同时降低噪声水平。因此,我们对模糊图像应用一系列不同方向的方向滤波器,并使用基于引导滤波器的边缘保留图像反卷积从每个滤波后的图像估计清晰图像的精确拉东变换。最后,我们使用逆拉东变换重建原始图像。我们在信噪比的提高和视觉质量方面将我们的反卷积算法与许多有竞争力的反卷积技术进行了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验