Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114 and Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115.
Med Phys. 2013 Oct;40(10):102506. doi: 10.1118/1.4820977.
Authors' goal is to evaluate the performance of simultaneous (99m)Tc-MDP/(123)I-MIBG tumor imaging with fast Monte-Carlo (MC) based joint iterative reconstruction as compared to sequential (99m)Tc-MDP and (123)I-MIBG tumor imaging.
Noise-free (99m)Tc and (123)I SPECT projections were acquired separately using an anthropomorphic torso phantom modified to include a fillable tube around the lungs to mimic ribs. Additionally, (99m)Tc and (123)I projections were acquired separately using a 1-cm spherical "tumor" placed at various distances from one detector. Tumor-present data were generated by adding tumor projections to the torso phantom data, which were scaled to the total counts in typical clinical studies. Twenty-five noise realizations were generated by adding Poisson noise to the projection data for each radionuclide. Dual-radionuclide data were synthesized by summing the (99m)Tc and (123)I projections. Image reconstruction was performed using: (1) SR-OSEM, ordered subset expectation maximization (OSEM) without scatter correction (SC) using single-radionuclide (SR) data; (2) SR-MC-OSEM, OSEM with a fast MC-based SC using SR data; (3) DR-OSEM, OSEM without SC using dual-radionuclide (DR) data; and (4) DR-MC-JOSEM, joint OSEM with a fast MC-based SC using DR data. Ten (99m)Tc-MDP and ten (123)I-MIBG data sets, which had tumors mathematically inserted, were also used to evaluate the performance of authors' approach. For the phantom study, relative bias and relative standard deviation of tumor uptake were computed for each tumor using the tumor uptake in the noise-free single-radionuclide images, which were reconstructed by SR-MC-OSEM, as the gold standard. For both the phantom and constructed patient studies, mean contrast and standard deviation of contrast were computed for each tumor for both the single- and dual-radionuclide images. Additionally, contrast recovery was computed as the ratio between mean contrast and the mean contrast for SR-MC-OSEM.
For the phantom study, DR-MC-JOSEM yielded 2.7% on average relative bias of tumor uptake using the images, which were reconstructed from the noise-free SR data with SR-MC-OSEM, as the gold-standard. For both the phantom and constructed patient studies, DR-MC-JOSEM yielded 94.7% and 95.2% tumor contrast recovery on average using SR-MC-OSEM as the reference, in the phantom and constructed patient studies, respectively. DR-MC-JOSEM yielded comparable relative standard deviation of bias and standard deviation of contrast to SR-MC-OSEM.
Simultaneous (99m)Tc-MDP/(123)I-MIBG tumor imaging using authors' dual-radionuclide reconstruction approach yielded comparable image quality to sequential (99m)Tc-MDP and (123)I-MIBG imaging. For patients who need to undergo both scans, authors' approach offers perfectly registered dual-tracer images under identical conditions without compromising image quality, and reduces the imaging cost while increasing patient throughput.
作者的目标是评估使用基于快速蒙特卡罗(MC)的联合迭代重建的同时(99m)Tc-MDP/(123)I-MIBG 肿瘤成像的性能,与顺序(99m)Tc-MDP 和(123)I-MIBG 肿瘤成像相比。
使用修改后的拟人化躯干模型分别获取无噪声(99m)Tc 和(123)I SPECT 投影,该模型在肺部周围包含一个可填充的管以模拟肋骨。此外,还使用放置在离一个探测器不同距离的 1 厘米球形“肿瘤”分别获取(99m)Tc 和(123)I 投影。肿瘤存在数据是通过将肿瘤投影添加到躯干模型数据中生成的,这些数据按典型临床研究中的总计数进行缩放。对于每个放射性核素,通过向投影数据添加泊松噪声生成了 25 个噪声实现。通过对(99m)Tc 和(123)I 投影进行求和来合成双放射性核素数据。使用以下方法进行图像重建:(1)SR-OSEM,使用单放射性核素(SR)数据的无散射校正(SC)的有序子集期望最大化(OSEM);(2)SR-MC-OSEM,使用基于快速 MC 的 SC 的 OSEM 使用 SR 数据;(3)DR-OSEM,使用双放射性核素(DR)数据的无 SC 的 OSEM;(4)DR-MC-JOSEM,使用基于快速 MC 的 SC 的联合 OSEM 使用 DR 数据。还使用了十个(99m)Tc-MDP 和十个(123)I-MIBG 数据集,这些数据集具有数学插入的肿瘤,用于评估作者方法的性能。对于体模研究,使用通过 SR-MC-OSEM 重建的无噪声单放射性核素图像中的肿瘤摄取,计算每个肿瘤的相对偏差和相对标准偏差,该图像用作金标准。对于体模和构建的患者研究,对于单和双放射性核素图像中的每个肿瘤,计算平均对比度和对比度的标准偏差。此外,作为对比恢复,计算为平均对比度与 SR-MC-OSEM 的平均对比度之比。
对于体模研究,使用从使用 SR-MC-OSEM 重建的无噪声 SR 数据中获得的图像,DR-MC-JOSEM 平均获得 2.7%的肿瘤摄取相对偏差,作为金标准。对于体模和构建的患者研究,DR-MC-JOSEM 分别使用 SR-MC-OSEM 作为参考,平均获得 94.7%和 95.2%的肿瘤对比度恢复,在体模和构建的患者研究中。DR-MC-JOSEM 产生的偏差相对标准偏差和对比度标准偏差与 SR-MC-OSEM 相当。
使用作者的双放射性核素重建方法进行同时(99m)Tc-MDP/(123)I-MIBG 肿瘤成像,可获得与顺序(99m)Tc-MDP 和(123)I-MIBG 成像相当的图像质量。对于需要同时进行这两种扫描的患者,作者的方法在不影响图像质量的情况下提供了完全配准的双示踪剂图像,并降低了成像成本,同时提高了患者吞吐量。