Department of Wildlife Ecology and Conservation, PO Box 110430, 110 Newins-Ziegler Hall, University of Florida, Gainesville, Florida 32611-0430, USA.
Nat Commun. 2013;4:2572. doi: 10.1038/ncomms3572.
For nearly a century, biologists have emphasized the profound importance of spatial scale for ecology, evolution and conservation. Nonetheless, objectively identifying critical scales has proven incredibly challenging. Here we extend new techniques from physics and social sciences that estimate modularity on networks to identify critical scales for movement and gene flow in animals. Using four species that vary widely in dispersal ability and include both mark-recapture and population genetic data, we identify significant modularity in three species, two of which cannot be explained by geographic distance alone. Importantly, the inclusion of modularity in connectivity and population viability assessments alters conclusions regarding patch importance to connectivity and suggests higher metapopulation viability than when ignoring this hidden spatial scale. We argue that network modularity reveals critical meso-scales that are probably common in populations, providing a powerful means of identifying fundamental scales for biology and for conservation strategies aimed at recovering imperilled species.
近一个世纪以来,生物学家一直强调空间尺度对生态学、进化和保护的深远重要性。尽管如此,客观地确定关键尺度仍然极具挑战性。在这里,我们扩展了来自物理学和社会科学的新技术,这些技术可以估计网络上的模块性,以确定动物运动和基因流动的关键尺度。利用四种在扩散能力上差异很大的物种,包括标记-重捕和种群遗传数据,我们在三种物种中发现了显著的模块性,其中两种不能仅用地理距离来解释。重要的是,将模块性纳入连通性和种群生存力评估中,改变了斑块对连通性重要性的结论,并表明比忽略这种隐藏的空间尺度时更高的集合种群生存力。我们认为,网络模块性揭示了可能在种群中普遍存在的关键中尺度,为确定生物学和旨在恢复濒危物种的保护策略的基本尺度提供了一种强大的手段。