From the Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
J Biol Chem. 2013 Nov 15;288(46):33427-38. doi: 10.1074/jbc.M113.505289. Epub 2013 Oct 4.
Much physiological and behavioral evidence has been provided suggesting that insect odorant-binding proteins (OBPs) are indispensable for odorant recognition and thus are appealing targets for structure-based discovery and design of novel host-seeking disruptors. Despite the fact that more than 60 putative OBP-encoding genes have been identified in the malaria vector Anopheles gambiae, the crystal structures of only six of them are known. It is therefore clear that OBP structure determination constitutes the bottleneck for structure-based approaches to mosquito repellent/attractant discovery. Here, we describe the three-dimensional structure of an A. gambiae "Plus-C" group OBP (AgamOBP48), which exhibits the second highest expression levels in female antennae. This structure represents the first example of a three-dimensional domain-swapped dimer in dipteran species. A combined binding site is formed at the dimer interface by equal contribution of each monomer. Structural comparisons with the monomeric AgamOBP47 revealed that the major structural difference between the two Plus-C proteins localizes in their N- and C-terminal regions, and their concerted conformational change may account for monomer-swapped dimer conversion and furthermore the formation of novel binding pockets. Using a combination of gel filtration chromatography, differential scanning calorimetry, and analytical ultracentrifugation, we demonstrate the AgamOBP48 dimerization in solution. Eventually, molecular modeling calculations were used to predict the binding mode of the most potent synthetic ligand of AgamOBP48 known so far, discovered by ligand- and structure-based virtual screening. The structure-aided identification of multiple OBP binders represents a powerful tool to be employed in the effort to control transmission of the vector-borne diseases.
大量的生理和行为证据表明,昆虫气味结合蛋白(OBP)在气味识别中是不可或缺的,因此它们是基于结构的发现和设计新型宿主寻求干扰物的有吸引力的目标。尽管在疟疾传播媒介冈比亚按蚊中已经鉴定出超过 60 个假定的 OBP 编码基因,但目前仅知道其中 6 个的晶体结构。因此,OBP 结构测定显然是基于结构的蚊子驱避剂/引诱剂发现方法的瓶颈。在这里,我们描述了冈比亚按蚊“Plus-C”组 OBP(AgamOBP48)的三维结构,它在雌性触角中表现出第二高的表达水平。该结构代表了双翅目物种中第一个三维结构域交换二聚体的例子。通过每个单体的平等贡献,在二聚体界面处形成了一个组合的结合位点。与单体 AgamOBP47 的结构比较表明,两个 Plus-C 蛋白之间的主要结构差异位于它们的 N 和 C 末端区域,它们的协同构象变化可能解释了单体交换二聚体的转换,以及新结合口袋的形成。我们使用凝胶过滤色谱、差示扫描量热法和分析超速离心法相结合,证明了 AgamOBP48 在溶液中的二聚化。最终,分子建模计算用于预测迄今为止发现的 AgamOBP48 最有效合成配体的结合模式,该配体是通过配体和结构虚拟筛选发现的。基于结构的 OBP 结合剂鉴定代表了一种强大的工具,可用于控制载体传播疾病的传播。