Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia ; School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.
PLoS Genet. 2013;9(10):e1003834. doi: 10.1371/journal.pgen.1003834. Epub 2013 Oct 3.
Escherichia coli ST131 is a globally disseminated, multidrug resistant clone responsible for a high proportion of urinary tract and bloodstream infections. The rapid emergence and successful spread of E. coli ST131 is strongly associated with antibiotic resistance; however, this phenotype alone is unlikely to explain its dominance amongst multidrug resistant uropathogens circulating worldwide in hospitals and the community. Thus, a greater understanding of the molecular mechanisms that underpin the fitness of E. coli ST131 is required. In this study, we employed hyper-saturated transposon mutagenesis in combination with multiplexed transposon directed insertion-site sequencing to define the essential genes required for in vitro growth and the serum resistome (i.e. genes required for resistance to human serum) of E. coli EC958, a representative of the predominant E. coli ST131 clonal lineage. We identified 315 essential genes in E. coli EC958, 231 (73%) of which were also essential in E. coli K-12. The serum resistome comprised 56 genes, the majority of which encode membrane proteins or factors involved in lipopolysaccharide (LPS) biosynthesis. Targeted mutagenesis confirmed a role in serum resistance for 46 (82%) of these genes. The murein lipoprotein Lpp, along with two lipid A-core biosynthesis enzymes WaaP and WaaG, were most strongly associated with serum resistance. While LPS was the main resistance mechanism defined for E. coli EC958 in serum, the enterobacterial common antigen and colanic acid also impacted on this phenotype. Our analysis also identified a novel function for two genes, hyxA and hyxR, as minor regulators of O-antigen chain length. This study offers novel insight into the genetic make-up of E. coli ST131, and provides a framework for future research on E. coli and other Gram-negative pathogens to define their essential gene repertoire and to dissect the molecular mechanisms that enable them to survive in the bloodstream and cause disease.
大肠杆菌 ST131 是一种全球传播的、多药耐药克隆,导致了很大一部分尿路感染和血流感染。大肠杆菌 ST131 的快速出现和成功传播与抗生素耐药性密切相关;然而,仅凭这种表型不太可能解释其在全球医院和社区中循环的多药耐药尿路病原体中的优势地位。因此,需要更深入地了解支撑大肠杆菌 ST131 适应性的分子机制。在这项研究中,我们采用超饱和转座子诱变结合多重转座子定向插入位点测序,定义了代表主要大肠杆菌 ST131 克隆谱系的 EC958 大肠杆菌体外生长和血清抗性组(即对人血清的抗性所需的基因)所必需的基因。我们在大肠杆菌 EC958 中鉴定了 315 个必需基因,其中 231 个(73%)在大肠杆菌 K-12 中也是必需的。血清抗性组由 56 个基因组成,其中大多数编码膜蛋白或参与脂多糖(LPS)生物合成的因子。靶向突变证实了其中 46 个(82%)基因在血清抗性中的作用。脂蛋白 Lpp 以及两种脂酰基核心生物合成酶 WaaP 和 WaaG 与血清抗性的关系最为密切。虽然 LPS 是 EC958 大肠杆菌在血清中定义的主要抗性机制,但肠杆菌共同抗原和聚糖酸也影响了这种表型。我们的分析还确定了两个基因 hyxA 和 hyxR 的新功能,作为 O-抗原链长的次要调节因子。这项研究为大肠杆菌 ST131 的遗传组成提供了新的见解,并为未来大肠杆菌和其他革兰氏阴性病原体的研究提供了框架,以确定它们的必需基因组,并剖析使它们能够在血液中存活并引起疾病的分子机制。