Liu Yan, Guenneau Sébastien, Gralak Boris
CNRS, Ecole Centrale Marseille, Aix-Marseille Université, Institut Fresnel, UMR 7249, 13013 Marseille, France.
Proc Math Phys Eng Sci. 2013 Oct 8;469(2158):20130240. doi: 10.1098/rspa.2013.0240.
We investigate a high-order homogenization (HOH) algorithm for periodic multi-layered stacks. The mathematical tool of choice is a transfer matrix method. Expressions for effective permeability, permittivity and magnetoelectric coupling are explored by frequency power expansions. On the physical side, this HOH uncovers a magnetoelectric coupling effect (odd-order approximation) and artificial magnetism (even-order approximation) in moderate contrast photonic crystals. Comparing the effective parameters' expressions of a stack with three layers against that of a stack with two layers, we note that the magnetoelectric coupling effect vanishes while the artificial magnetism can still be achieved in a centre-symmetric periodic structure. Furthermore, we numerically check the effective parameters through the dispersion law and transmission property of a stack with two dielectric layers against that of an effective bianisotropic medium: they are in good agreement throughout the low-frequency (acoustic) band until the first stop band, where the analyticity of the logarithm function of the transfer matrix ([Formula: see text]) breaks down.
我们研究了一种用于周期性多层堆叠的高阶均匀化(HOH)算法。所选用的数学工具是转移矩阵法。通过频率幂次展开来探索有效磁导率、介电常数和磁电耦合的表达式。在物理方面,这种高阶均匀化揭示了中等对比度光子晶体中的磁电耦合效应(奇数阶近似)和人工磁性(偶数阶近似)。通过比较三层堆叠和两层堆叠的有效参数表达式,我们注意到在中心对称周期性结构中,磁电耦合效应消失,而人工磁性仍然可以实现。此外,我们通过具有两个介电层的堆叠的色散定律和传输特性与有效双各向异性介质的色散定律和传输特性进行数值对比,来检验有效参数:在整个低频(声学)频段直至第一个禁带,它们都具有良好的一致性,在第一个禁带处转移矩阵([公式:见原文])的对数函数的解析性失效。