Suppr超能文献

多项III期试验统计成功的联合概率。

Joint probability of statistical success of multiple phase III trials.

作者信息

Zhang Jianliang, Zhang Jenny J

机构信息

MedImmune, One MedImmune Way, Gaithersburg, MD 20878, USA.

出版信息

Pharm Stat. 2013 Nov-Dec;12(6):358-65. doi: 10.1002/pst.1597. Epub 2013 Sep 16.

Abstract

In drug development, after completion of phase II proof-of-concept trials, the sponsor needs to make a go/no-go decision to start expensive phase III trials. The probability of statistical success (PoSS) of the phase III trials based on data from earlier studies is an important factor in that decision-making process. Instead of statistical power, the predictive power of a phase III trial, which takes into account the uncertainty in the estimation of treatment effect from earlier studies, has been proposed to evaluate the PoSS of a single trial. However, regulatory authorities generally require statistical significance in two (or more) trials for marketing licensure. We show that the predictive statistics of two future trials are statistically correlated through use of the common observed data from earlier studies. Thus, the joint predictive power should not be evaluated as a simplistic product of the predictive powers of the individual trials. We develop the relevant formulae for the appropriate evaluation of the joint predictive power and provide numerical examples. Our methodology is further extended to the more complex phase III development scenario comprising more than two (K > 2) trials, that is, the evaluation of the PoSS of at least k₀ (k₀≤ K) trials from a program of K total trials.

摘要

在药物研发中,完成II期概念验证试验后,申办方需要做出继续/终止的决定,以启动昂贵的III期试验。基于早期研究数据的III期试验的统计学成功概率(PoSS)是该决策过程中的一个重要因素。有人提出,用III期试验的预测能力(该能力考虑了早期研究中治疗效果估计的不确定性)来评估单个试验的PoSS,而不是使用统计功效。然而,监管机构通常要求两项(或更多)试验具有统计学显著性才能获得上市许可。我们通过使用早期研究中的共同观测数据表明,两项未来试验的预测统计量在统计学上是相关的。因此,联合预测能力不应简单地评估为各个试验预测能力的乘积。我们推导了用于适当评估联合预测能力的相关公式,并给出了数值示例。我们的方法进一步扩展到了包含两项以上(K > 2)试验的更复杂的III期研发场景,即从总共K项试验的计划中评估至少k₀(k₀≤ K)项试验的PoSS。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验