Suppr超能文献

使用形态成分分析从脑电图信号中实时去除眨眼噪声

Real time eye blink noise removal from EEG signals using morphological component analysis.

作者信息

Matiko Joseph W, Beeby Stephen, Tudor John

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:13-6. doi: 10.1109/EMBC.2013.6609425.

Abstract

This paper presents a method of removing the noise caused by eye blinks from an electroencephalogram (EEG) signal in real time based on morphological component analysis (MCA). This method sparsely represents both the eye blink and the EEG signal basis matrices using a Short Time Fourier Transform (STFT). This approach has two main advantages: 1) fast computation of the estimation of the signal coefficients using the basis pursuit algorithm 2) less memory requirement. The obtained result shows that the correlation coefficient between the raw EEG and the cleaned EEG is between 0.72 and 0.94 which implies that it is possible to remove eye blink noise from the EEG signal in real time without affecting an underlying brain signal.

摘要

本文提出了一种基于形态分量分析(MCA)实时去除脑电图(EEG)信号中眨眼所引起噪声的方法。该方法使用短时傅里叶变换(STFT)对眨眼和EEG信号基矩阵进行稀疏表示。这种方法有两个主要优点:1)使用基追踪算法快速计算信号系数估计值;2)内存需求较少。所得结果表明,原始EEG与去噪后EEG之间的相关系数在0.72至0.94之间,这意味着可以实时从EEG信号中去除眨眼噪声而不影响潜在的脑信号。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验