Suppr超能文献

通过结合独立成分分析(ICA)和加权自适应波束成形(WABS)分解心房活动信号。

Decomposing atrial activity signal by combining ICA and WABS.

作者信息

Dai Huhe, Sodhro Ali Hassan, Li Ye

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:5849-52. doi: 10.1109/EMBC.2013.6610882.

Abstract

In this paper we proposed a novel technique for Atrial Activity (AA) decomposition in Electrocardiogram (ECG) of Atrial Fibrillation (AF). The main purpose of our proposed technique is to decompose AA signal by combining two statistical methods, Independent Component Analysis (ICA)-existing and Weighted Average Beat Subtraction (WABS)-new, for AF with multiple stable sources, respectively. We found the limits of BSS algorithms which are mostly used to extract AA signal, while beauty of our proposed algorithm is that it decomposes multi-lead AA signals from surface ECG with AF. Our proposed technique is verified with clinical data and the results demonstrate that our proposed method is feasible.

摘要

在本文中,我们提出了一种用于心房颤动(AF)心电图(ECG)中心房活动(AA)分解的新技术。我们提出的技术的主要目的是分别通过结合两种统计方法,即现有的独立成分分析(ICA)和新的加权平均搏动减法(WABS),来分解具有多个稳定源的AF的AA信号。我们发现了大多数用于提取AA信号的盲源分离(BSS)算法的局限性,而我们提出的算法的优点在于它能从伴有AF的体表心电图中分解多导联AA信号。我们提出的技术通过临床数据得到了验证,结果表明我们提出的方法是可行的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验