Suppr超能文献

用于减少由于电导率值不确定导致的脑电图多源定位误差的子空间电极选择方法。

Subspace electrode selection methodology for EEG multiple source localization error reduction due to uncertain conductivity values.

作者信息

Crevecoeur Guillaume, Yitembe Bertrand, Dupre Luc, Van Keer Roger

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:6191-4. doi: 10.1109/EMBC.2013.6610967.

Abstract

This paper proposes a modification of the subspace correlation cost function and the Recursively Applied and Projected Multiple Signal Classification (RAP-MUSIC) method for electroencephalography (EEG) source analysis in epilepsy. This enables to reconstruct neural source locations and orientations that are less degraded due to the uncertain knowledge of the head conductivity values. An extended linear forward model is used in the subspace correlation cost function that incorporates the sensitivity of the EEG potentials to the uncertain conductivity value parameter. More specifically, the principal vector of the subspace correlation function is used to provide relevant information for solving the EEG inverse problems. A simulation study is carried out on a simplified spherical head model with uncertain skull to soft tissue conductivity ratio. Results show an improvement in the reconstruction accuracy of source parameters compared to traditional methodology, when using conductivity ratio values that are different from the actual conductivity ratio.

摘要

本文提出了一种用于癫痫脑电图(EEG)源分析的子空间相关代价函数和递归应用投影多信号分类(RAP-MUSIC)方法的改进方法。这使得能够重建由于头部电导率值的不确定知识而退化程度较小的神经源位置和方向。在子空间相关代价函数中使用了扩展线性正向模型,该模型纳入了EEG电位对不确定电导率值参数的敏感性。更具体地说,子空间相关函数的主向量用于为解决EEG逆问题提供相关信息。在具有不确定颅骨与软组织电导率比的简化球形头部模型上进行了模拟研究。结果表明,当使用与实际电导率比不同的电导率比值时,与传统方法相比,源参数的重建精度有所提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验