Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom.
J Chem Phys. 2013 Oct 14;139(14):144107. doi: 10.1063/1.4824431.
In [K. Gokhberg, V. Vysotskiy, L. S. Cederbaum, L. Storchi, F. Tarantelli, and V. Averbukh, J. Chem. Phys. 130, 064104 (2009)] we introduced a new L(2) ab initio method for the calculation of total molecular photoionization cross-sections. The method is based on the ab initio description of discretized photoionized molecular states within the many-electron Green's function approach, known as algebraic diagrammatic construction (ADC), and on the application of Stieltjes-Chebyshev moment theory to Lanczos pseudospectra of the ADC electronic Hamiltonian. Here we establish the accuracy of the new technique by comparing the ADC-Lanczos-Stieltjes cross-sections in the valence ionization region to the experimental ones for a series of eight molecules of first row elements: HF, NH3, H2O, CO2, H2CO, CH4, C2H2, and C2H4. We find that the use of the second-order ADC technique [ADC(2)] that includes double electronic excitations leads to a substantial systematic improvement over the first-order method [ADC(1)] and to a good agreement with experiment for photon energies below 80 eV. The use of extended second-order ADC theory [ADC(2)x] leads to a smaller further improvement. Above 80 eV photon energy all three methods lead to significant deviations from the experimental values which we attribute to the use of Gaussian single-electron bases. Our calculations show that the ADC(2)-Lanczos-Stieltjes technique is a reliable and efficient ab initio tool for theoretical prediction of total molecular photo-ionization cross-sections in the valence region.
在 [K. Gokhberg、V. Vysotskiy、L. S. Cederbaum、L. Storchi、F. Tarantelli 和 V. Averbukh,J. Chem. Phys. 130, 064104 (2009)] 中,我们引入了一种新的 L(2)从头算方法来计算总分子光电离截面。该方法基于多电子格林函数方法(称为代数图论构造 (ADC))中离散光电离分子态的从头算描述,以及施蒂尔杰斯-切比雪夫矩理论在 ADC 电子哈密顿量兰索斯伪谱中的应用。在这里,我们通过将 ADC-Lanczos-Stieltjes 截面与一系列 8 个第一行元素分子的实验值进行比较,来确定新技术的准确性:HF、NH3、H2O、CO2、H2CO、CH4、C2H2 和 C2H4。我们发现,使用包括双电子激发的二阶 ADC 技术 [ADC(2)] 可大大提高一阶方法 [ADC(1)] 的系统性,并在光子能量低于 80 eV 时与实验值很好地吻合。使用扩展二阶 ADC 理论 [ADC(2)x] 会进一步略有改善。在 80 eV 以上的光子能量下,所有三种方法都会导致与实验值的显著偏差,我们将其归因于使用高斯单电子基。我们的计算表明,ADC(2)-Lanczos-Stieltjes 技术是一种可靠且高效的从头算工具,可用于预测价区的总分子光电离截面。