Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle.
J Infect Dis. 2014 Jan 15;209(2):275-84. doi: 10.1093/infdis/jit522. Epub 2013 Oct 10.
Malaria parasites are transmitted by mosquitoes, and blocking parasite transmission is critical in reducing or eliminating malaria in endemic regions. Here, we report the pharmacological characterization of a new class of malaria transmission-blocking compounds that acts via the inhibition of Plasmodia CDPK4 enzyme. We demonstrate that these compounds achieved selectivity over mammalian kinases by capitalizing on a small serine gatekeeper residue in the active site of the Plasmodium CDPK4 enzyme. To directly confirm the mechanism of action of these compounds, we generated P. falciparum parasites that express a drug-resistant methionine gatekeeper (S147 M) CDPK4 mutant. Mutant parasites showed a shift in exflagellation EC50 relative to the wild-type strains in the presence of compound 1294, providing chemical-genetic evidence that CDPK4 is the target of the compound. Pharmacokinetic analyses suggest that coformulation of this transmission-blocking agent with asexual stage antimalarials such as artemisinin combination therapy (ACT) is a promising option for drug delivery that may reduce transmission of malaria including drug-resistant strains. Ongoing studies include refining the compounds to improve efficacy and toxicological properties for efficient blocking of malaria transmission.
疟原虫通过蚊子传播,阻断寄生虫传播对于减少或消除流行地区的疟疾至关重要。在这里,我们报告了一类新的疟疾传播阻断化合物的药理学特性,该化合物通过抑制疟原虫 CDPK4 酶起作用。我们证明,这些化合物通过利用疟原虫 CDPK4 酶活性位点中的一个小丝氨酸“守门员”残基,实现了对哺乳动物激酶的选择性。为了直接证实这些化合物的作用机制,我们生成了表达对药物有抗性的蛋氨酸“守门员”(S147 M)CDPK4 突变体的恶性疟原虫寄生虫。在化合物 1294 存在的情况下,突变寄生虫的出芽 EC50 相对于野生型菌株发生了转移,这为 CDPK4 是该化合物的靶标提供了化学生物学证据。药代动力学分析表明,将这种传播阻断剂与青蒿素联合疗法(ACT)等无性阶段抗疟药物联合使用是一种很有前途的药物输送选择,可能会减少疟疾传播,包括耐药菌株的传播。正在进行的研究包括改进化合物以提高疗效和毒理学特性,从而有效阻断疟疾传播。