Suppr超能文献

对西尔伯特和托马斯(2013年)的技术澄清:“一般识别理论框架中的决策可分性、模型识别和统计推断”

Technical clarification to Silbert and Thomas (2013): "decisional separability, model identification, and statistical inference in the general recognition theory framework".

作者信息

Thomas Robin D, Silbert Noah H

机构信息

Department of Psychology, Miami University, Oxford, OH, 45056, USA,

出版信息

Psychon Bull Rev. 2014 Apr;21(2):574-5. doi: 10.3758/s13423-013-0529-6.

Abstract

We offer a minor technical correction to the published proof of part (ii) of the main theorem in Silbert and Thomas (Psychonomic Bulletin & Review, 20, 1-20, 2013) that somewhat limits the scope of the equivalence observed in that work. Specifically, in order for a mean shift integrality with decisional separability to be mimicked by a perceptually separable but nondecisionally separable configuration, one needs to assume stimulus invariance. This holds when all of the covariance matrices in the stimulus configuration are equal to each other. We note that part (i) of the theorem is unaffected by this modification; an empirical finding of perceptual separability and the failure of decisional separability can be mimicked by a perceptually nonseparable, decisionally separable configuration without restricting the covariance matrices to be equal. We also note that stimulus invariance is often assumed in simple designs (e.g., Macmillan & Ornstein in Journal of the Acoustical Society of America, 97, 1261-1285, 1998), due to the implausibility of different perceptual correlations being present within stimuli perched very closely in perceptual space.

摘要

我们对西尔伯特和托马斯(《心理onomic通报与评论》,20,1 - 20,2013)主定理第(ii)部分已发表的证明提出一个小的技术修正,该修正稍微限制了该研究中所观察到的等价性的范围。具体而言,为了使具有决策可分离性的均值漂移整体性能够被感知可分离但非决策可分离的配置所模拟,需要假设刺激不变性。当刺激配置中的所有协方差矩阵彼此相等时,这一条件成立。我们注意到该定理的第(i)部分不受此修正的影响;感知可分离性和决策可分离性失败的实证发现可以被感知不可分离、决策可分离的配置所模拟,而无需将协方差矩阵限制为相等。我们还注意到,由于在感知空间中非常接近的刺激之间存在不同感知相关性的不合理性,在简单设计中(例如,麦克米伦和奥恩斯坦在《美国声学学会杂志》,97,1261 - 1285,1998)通常会假设刺激不变性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验