Cavendish Laboratory, University of Cambridge , J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom.
Nano Lett. 2013 Nov 13;13(11):5303-10. doi: 10.1021/nl4028186. Epub 2013 Oct 24.
Crystal-phase engineering has emerged as a novel method of bandgap engineering, made feasible by the high surface-to-volume ratio of nanowires. There remains intense debate about the exact characteristics of the band structure of the novel crystal phases, such as wurtzite GaAs, obtained by this approach. We attack this problem via a low-temperature angle-dependent magneto-photoluminescence study of wurtzite/zinc-blende quantum disks in single GaAs nanowires. The exciton diamagnetic coefficient is proportional to the electron-hole correlation length, enabling a determination of the spatial extent of the exciton wave function in the plane and along the confinement axis of the crystal-phase quantum disks. Depending on the disk nature, the diamagnetic coefficient measured in Faraday geometry ranges between 25 and 75 μeV/T(2). For a given disk, the diamagnetic coefficient remains constant upon rotation of the magnetic field. Along with our envelope function calculation accounting for excitonic effects, we demonstrate that the electron effective mass in wurtzite GaAs quantum disks is heavy, mostly isotropic and results from mixing of the two lower-energy conduction bands with Γ7 and Γ8 symmetries. Finally, we discuss the implications of the results of the angle dependent magneto-luminescence for the likely symmetry of the exciton states. This work provides important insight in the band structure of wurtzite GaAs for future nanowire-based polytypic bandgap engineering.
晶体相工程已成为一种新的能带工程方法,这得益于纳米线的高表面积与体积比。通过这种方法获得的新型晶体相(如纤锌矿 GaAs)的能带结构的确切特性仍然存在激烈的争论。我们通过低温角度依赖磁光致发光研究来解决这个问题,该研究针对的是在单个 GaAs 纳米线中的纤锌矿/闪锌矿量子盘。激子抗磁性系数与电子-空穴相关长度成正比,这使得能够确定激子波函数在平面和晶体相量子盘中的限制轴上的空间延伸。根据盘的性质,在法拉第几何中测量的抗磁性系数在 25 到 75 μeV/T(2)之间。对于给定的盘,当磁场旋转时,抗磁性系数保持不变。结合考虑激子效应的包络函数计算,我们证明了纤锌矿 GaAs 量子盘中的电子有效质量是重的,主要是各向同性的,并且是由Γ7 和 Γ8 对称性的两个较低能量导带的混合引起的。最后,我们讨论了角度依赖磁致发光结果对激子态可能对称性的影响。这项工作为未来基于纳米线的多型能带工程中纤锌矿 GaAs 的能带结构提供了重要的见解。