Eberly Valerie J, Mulroy Sara J, Gronley JoAnne K, Perry Jacquelin, Yule William J, Burnfield Judith M
Rancho Los Amigos National Rehabilitation Center, Downey, CA, USA
Rancho Los Amigos National Rehabilitation Center, Downey, CA, USA.
Prosthet Orthot Int. 2014 Dec;38(6):447-55. doi: 10.1177/0309364613506912. Epub 2013 Oct 17.
For individuals with transfemoral amputation, walking with a prosthesis presents challenges to stability and increases the demand on the hip of the prosthetic limb. Increasing age or comorbidities magnify these challenges. Computerized prosthetic knee joints improve stability and efficiency of gait, but are seldom prescribed for less physically capable walkers who may benefit from them.
To compare level walking function while wearing a microprocessor-controlled knee (C-Leg Compact) prosthesis to a traditionally prescribed non-microprocessor-controlled knee prosthesis for Medicare Functional Classification Level K-2 walkers.
Crossover.
Stride characteristics, kinematics, kinetics, and electromyographic activity were recorded in 10 participants while walking with non-microprocessor-controlled knee and Compact prostheses.
Walking with the Compact produced significant increase in velocity, cadence, stride length, single-limb support, and heel-rise timing compared to walking with the non-microprocessor-controlled knee prosthesis. Hip and thigh extension during late stance improved bilaterally. Ankle dorsiflexion, knee extension, and hip flexion moments of the prosthetic limb were significantly improved.
Improvements in walking function and stability on the prosthetic limb were demonstrated by the K-2 level walkers when using the C-Leg Compact prosthesis.
Understanding the impact of new prosthetic designs on gait mechanics is essential to improve prescription guidelines for deconditioned or older persons with transfemoral amputation. Prosthetic designs that improve stability for safety and walking function have the potential to improve community participation and quality of life.
对于经股截肢者而言,使用假肢行走对稳定性构成挑战,并增加了对假肢侧髋关节的需求。年龄增长或合并症会加剧这些挑战。计算机化假肢膝关节可提高步态的稳定性和效率,但对于可能从中受益的身体机能较差的步行者,很少会开具此类假肢的处方。
比较医疗保险功能分级为K-2级的步行者佩戴微处理器控制膝关节(C-Leg Compact)假肢与传统开具的非微处理器控制膝关节假肢时的平地行走功能。
交叉试验。
记录10名参与者在使用非微处理器控制膝关节假肢和Compact假肢行走时的步幅特征、运动学、动力学和肌电图活动。
与使用非微处理器控制膝关节假肢行走相比,使用Compact假肢行走时,速度、步频、步长、单腿支撑和足跟抬起时间均显著增加。双侧在站立后期的髋关节和大腿伸展均得到改善。假肢侧的踝关节背屈、膝关节伸展和髋关节屈曲力矩均显著改善。
K-2级步行者使用C-Leg Compact假肢时,假肢侧的行走功能和稳定性得到改善。
了解新型假肢设计对步态力学的影响对于改进针对身体机能减退或经股截肢老年人的处方指南至关重要。能够提高安全性和行走功能稳定性的假肢设计有可能改善社区参与度和生活质量。