Section of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA.
Mol Ecol. 2013 Sep;22(17):4363-5. doi: 10.1111/mec.12467.
The East African cichlid fishes provide text book examples of adaptive radiation. Diversification and speciation of cichlids associate with variation in diet and trophic morphologies among other ecological, behavioural and morphological phenotypes (Kocher 2004). Numerous case studies in cichlids reveal a role of developmental plasticity in generating jaw ecomorphs in response to variation in feeding ecology that can facilitate niche exploitation and subsequent diversification (e.g. Meyer 1987). Specifically, genetic divergence among such environmentally induced morphs can occur via reproductive isolation due to divergence in habitat and resource use in combination with genetic assimilation of environmentally induced phenotypes (West-Eberhard 2003; Pfennig et al. 2010). Expansion of this conceptual model has been hampered in part by the limited knowledge of the molecular mechanisms of plasticity in nonstandard model systems and the associated lack of evidence linking the molecular mechanisms of plasticity to those that generate phenotypic divergence among populations and taxa. In this issue of Molecular Ecology, Gunter et al. (2013) identify the transcriptional mechanisms of diet-induced lower pharyngeal jaw (LPJ) plasticity in the cichlid fish Astatoreochromis alluaudi. Natural populations of A. alluaudi exhibit variation in jaw morphology in relation to diet hardness. Among the plastic responses to diet are adjustments to the LPJ ranging from a robust molariform morph in response to a hard diet to a more gracile papilliform morph in response to a soft diet (Fig. 1). Gunter and colleagues induced developmental plasticity of the A. alluaudi jaw using diet manipulations and compared LPJ transcriptomic profiles of the resulting morphs. In this foundational work, the authors identify 187 differentially expressed genes that underlie the development and maintenance of diet-induced LPJ morphologies. This list includes a wide range of genes spanning from broad-acting transcription factors to signalling molecules and structural genes. Here, I examine the ontogeny of the molecular response to mechanical strain imposed by diet hardness and discuss the role of the stages of this response in the evolution of plasticity and plasticity-driven diversification.
东非慈鲷鱼类提供了适应性辐射的典型范例。慈鲷的多样化和物种形成与饮食和营养形态的变化有关,还与其他生态、行为和形态表现型有关(Kocher 2004)。在慈鲷中,许多案例研究揭示了发育可塑性在产生对摄食生态变化的下颚生态型中的作用,这可以促进小生境的开发和随后的多样化(例如 Meyer 1987)。具体来说,由于栖息地和资源利用的差异以及环境诱导表型的遗传同化,在这种由环境引起的形态之间可能会发生遗传分化(West-Eberhard 2003;Pfennig 等人,2010 年)。由于缺乏关于非标准模式系统中可塑性的分子机制的知识,以及缺乏将可塑性的分子机制与那些在种群和分类群之间产生表型差异的分子机制联系起来的证据,这个概念模型的扩展在一定程度上受到了阻碍。在本期《分子生态学》中,Gunter 等人(2013 年)确定了慈鲷鱼 Astatoreochromis alluaudi 中饮食诱导的下咽骨(LPJ)可塑性的转录机制。A. alluaudi 的自然种群表现出与饮食硬度相关的下颚形态变化。对饮食的可塑性反应包括 LPJ 的调整,从对硬食的强壮摩尔形态到对软食的更优雅的乳突形态(图 1)。Gunter 和同事们使用饮食处理来诱导 A. alluaudi 下颚的发育可塑性,并比较了由此产生的形态的 LPJ 转录组谱。在这项基础工作中,作者确定了 187 个差异表达的基因,这些基因是饮食诱导的 LPJ 形态发育和维持的基础。这一列表包括了从广泛作用的转录因子到信号分子和结构基因等广泛的基因。在这里,我检查了分子对饮食硬度施加的机械应变的发育反应,并讨论了该反应的各个阶段在可塑性进化和由可塑性驱动的多样化中的作用。