KAUST, Red Sea Research Center, 23955–6900 Thuwal, Saudi Arabia.
Mol Ecol. 2013 Sep;22(17):4366-8. doi: 10.1111/mec.12464.
The existence of coral reef ecosystems relies critically on the mutualistic relationship between calcifying cnidarians and photosynthetic, dinoflagellate endosymbionts in the genus Symbiodinium. Reef-corals have declined globally due to anthropogenic stressors, for example, rising sea-surface temperatures and pollution that often disrupt these symbiotic relationships (known as coral bleaching), exacerbating mass mortality and the spread of disease. This threatens one of the most biodiverse marine ecosystems providing habitats to millions of species and supporting an estimated 500 million people globally (Hoegh-Guldberg et al. 2007). Our understanding of cnidarian–dinoflagellate symbioses has improved notably with the recent application of genomic and transcriptomic tools (e.g. Voolstra et al. 2009; Bayer et al. 2012; Davy et al. 2012), but a model system that allows for easy manipulation in a laboratory environment is needed to decipher underlying cellular mechanisms important to the functioning of these symbioses. To this end, the sea anemone Aiptasia, otherwise known as a ‘pest’ to aquarium hobbyists, is emerging as such a model system (Schoenberg & Trench 1980; Sunagawa et al. 2009; Lehnert et al. 2012). Aiptasia is easy to grow in culture and, in contrast to its stony relatives, can be maintained aposymbiotically (i.e. dinoflagellate free) with regular feeding. However, we lack basic information on the natural distribution and genetic diversity of these anemones and their endosymbiotic dinoflagellates. These data are essential for placing the significance of this model system into an ecological context. In this issue of Molecular Ecology, Thornhill et al. (2013) are the first to present genetic evidence on the global distribution, diversity and population structure of Aiptasia and its associated Symbiodinium spp. By integrating analyses of the host and symbiont, this research concludes that the current Aitpasia taxonomy probably needs revision and that two distinct Aiptasia lineages are prevalent that have probably been spread through human activity. One lineage engages in a specific symbiosis with Symbiodinium minutum throughout the tropics, whereas a second, local Aiptasia sp. population in Florida appears more flexible in partnering with more than one symbiont. The existence of symbiont-specific and symbiont-flexible Aiptasia lineages can greatly complement laboratory-based experiments looking into mechanisms of symbiont selectivity. In a broader context, the study by Thornhill et al. (2013) should inspire more studies to target the natural environment of model systems in a global context targeting all participating member species when establishing ecological and genetic baselines.
珊瑚礁生态系统的存在依赖于共生关系,即钙化刺胞动物和共生的光合甲藻(属名 Symbiodinium)之间的互利关系。由于人为压力,例如海平面上升和污染,全球范围内的珊瑚礁数量已经减少,这些压力经常破坏这些共生关系(称为珊瑚白化),加剧了大规模死亡和疾病的传播。这威胁到了最具生物多样性的海洋生态系统之一,为全球数百万种物种提供了栖息地,并支持着全球约 5 亿人口(Hoegh-Guldberg 等人,2007 年)。随着基因组和转录组工具的最新应用,我们对刺胞动物-甲藻共生关系的理解有了显著提高(例如,Voolstra 等人,2009 年;Bayer 等人,2012 年;Davy 等人,2012 年),但需要一个易于在实验室环境中操纵的模型系统来破译对这些共生关系功能至关重要的潜在细胞机制。为此,海葵 Aiptasia,又名水族馆爱好者的“害虫”,正在成为这样的模型系统(Schoenberg 和 Trench,1980 年;Sunagawa 等人,2009 年;Lehnert 等人,2012 年)。Aiptasia 易于在培养中生长,并且与它的石质近亲不同,可以通过定期喂食保持无共生状态(即没有甲藻)。然而,我们缺乏关于这些海葵及其共生甲藻的自然分布和遗传多样性的基本信息。这些数据对于将该模型系统的意义置于生态背景中至关重要。在本期《分子生态学》中,Thornhill 等人(2013 年)首次提供了有关 Aiptasia 和其相关 Symbiodinium spp. 的全球分布、多样性和种群结构的遗传证据。通过整合宿主和共生体的分析,这项研究得出结论,目前的 Aitpasia 分类可能需要修订,并且可能已经通过人类活动传播了两种不同的 Aiptasia 谱系。一种谱系在整个热带地区与 Symbiodinium minutum 进行特定的共生关系,而佛罗里达州的第二种本地 Aiptasia sp. 种群似乎与多种共生体伙伴关系更加灵活。共生体特异性和共生体灵活性的 Aiptasia 谱系的存在可以极大地补充实验室为探索共生体选择性机制而进行的实验。在更广泛的背景下,Thornhill 等人(2013 年)的研究应该鼓励更多的研究以在全球范围内针对模型系统的自然环境为目标,在建立生态和遗传基线时,应涵盖所有参与的物种。