Suppr超能文献

拟南芥沙生亚种减数分裂对基因组加倍的适应。

Meiotic adaptation to genome duplication in Arabidopsis arenosa.

机构信息

Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, MA, 02138, USA.

School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.

出版信息

Curr Biol. 2013 Nov 4;23(21):2151-6. doi: 10.1016/j.cub.2013.08.059. Epub 2013 Oct 17.

Abstract

Whole genome duplication (WGD) is a major factor in the evolution of multicellular eukaryotes, yet by doubling the number of homologs, WGD severely challenges reliable chromosome segregation, a process conserved across kingdoms. Despite this, numerous genome-duplicated (polyploid) species persist in nature, indicating early problems can be overcome. Little is known about which genes are involved--only one has been molecularly characterized. To gain new insights into the molecular basis of adaptation to polyploidy, we investigated genome-wide patterns of differentiation between natural diploids and tetraploids of Arabidopsis arenosa, an outcrossing relative of A. thaliana. We first show that diploids are not preadapted to polyploid meiosis. We then use a genome scanning approach to show that although polymorphism is extensively shared across ploidy levels, there is strong ploidy-specific differentiation in 39 regions spanning 44 genes. These are discrete, mostly single-gene peaks of sharply elevated differentiation. Among these peaks are eight meiosis genes whose encoded proteins coordinate a specific subset of early meiotic functions, suggesting these genes comprise a polygenic solution to WGD-associated chromosome segregation challenges. Our findings indicate that even conserved meiotic processes can be capable of nimble evolutionary shifts when required.

摘要

全基因组复制(WGD)是多细胞真核生物进化的主要因素,但 WGD 将同源物的数量加倍,严重挑战了可靠的染色体分离,这一过程在各个领域都得到了保守。尽管如此,自然界中仍有许多基因组复制(多倍体)物种存在,这表明早期的问题是可以克服的。目前还不太清楚哪些基因参与其中——只有一个基因在分子上被描述过。为了深入了解适应多倍体的分子基础,我们研究了拟南芥近亲拟南芥自然二倍体和四倍体之间全基因组分化的模式。我们首先表明,二倍体并没有预先适应多倍体减数分裂。然后,我们使用基因组扫描方法表明,尽管多态性在不同倍性水平上广泛共享,但在跨越 44 个基因的 39 个区域中存在强烈的倍性特异性分化。这些是离散的、主要是单基因的高度分化峰值。在这些峰中,有八个减数分裂基因,其编码的蛋白质协调特定的早期减数分裂功能子集,这表明这些基因构成了多基因解决方案,以应对与 WGD 相关的染色体分离挑战。我们的发现表明,即使是保守的减数分裂过程,在需要时也能够进行灵活的进化转变。

相似文献

1
Meiotic adaptation to genome duplication in Arabidopsis arenosa.
Curr Biol. 2013 Nov 4;23(21):2151-6. doi: 10.1016/j.cub.2013.08.059. Epub 2013 Oct 17.
2
Derived alleles of two axis proteins affect meiotic traits in autotetraploid .
Proc Natl Acad Sci U S A. 2020 Apr 21;117(16):8980-8988. doi: 10.1073/pnas.1919459117. Epub 2020 Apr 9.
3
Novelty and Convergence in Adaptation to Whole Genome Duplication.
Mol Biol Evol. 2021 Aug 23;38(9):3910-3924. doi: 10.1093/molbev/msab096.
4
Polyploidy in the Arabidopsis genus.
Chromosome Res. 2014 Jun;22(2):117-34. doi: 10.1007/s10577-014-9416-x.
5
Genetic adaptation associated with genome-doubling in autotetraploid Arabidopsis arenosa.
PLoS Genet. 2012;8(12):e1003093. doi: 10.1371/journal.pgen.1003093. Epub 2012 Dec 20.
6
Selection on meiosis genes in diploid and tetraploid Arabidopsis arenosa.
Mol Biol Evol. 2015 Apr;32(4):944-55. doi: 10.1093/molbev/msu398. Epub 2014 Dec 26.
7
Meiosis in allopolyploid Arabidopsis suecica.
Plant J. 2022 Aug;111(4):1110-1122. doi: 10.1111/tpj.15879. Epub 2022 Jul 22.
8
Cytological techniques to analyze meiosis in Arabidopsis arenosa for investigating adaptation to polyploidy.
Front Plant Sci. 2014 Jan 3;4:546. doi: 10.3389/fpls.2013.00546. eCollection 2014.
9
The meiotic cohesin subunit REC8 contributes to multigenic adaptive evolution of autopolyploid meiosis in Arabidopsis arenosa.
PLoS Genet. 2022 Jul 13;18(7):e1010304. doi: 10.1371/journal.pgen.1010304. eCollection 2022 Jul.
10
De Novo Mutation and Rapid Protein (Co-)evolution during Meiotic Adaptation in Arabidopsis arenosa.
Mol Biol Evol. 2021 May 4;38(5):1980-1994. doi: 10.1093/molbev/msab001.

引用本文的文献

1
Bridging micro and macroevolution: insights from chromosomal dynamics in plants.
Front Plant Sci. 2025 Aug 22;16:1606450. doi: 10.3389/fpls.2025.1606450. eCollection 2025.
2
Whole-genome duplication increases genetic diversity and load in outcrossing .
Proc Natl Acad Sci U S A. 2025 Aug 5;122(31):e2501739122. doi: 10.1073/pnas.2501739122. Epub 2025 Jul 30.
6
Improved synapsis dynamics accompany meiotic stability in autotetraploids.
Proc Natl Acad Sci U S A. 2025 May 13;122(19):e2420115122. doi: 10.1073/pnas.2420115122. Epub 2025 May 7.
7
8
Recombination and the role of pseudo-overdominance in polyploid evolution.
bioRxiv. 2025 Mar 6:2025.02.28.640841. doi: 10.1101/2025.02.28.640841.

本文引用的文献

2
Genetic adaptation associated with genome-doubling in autotetraploid Arabidopsis arenosa.
PLoS Genet. 2012;8(12):e1003093. doi: 10.1371/journal.pgen.1003093. Epub 2012 Dec 20.
4
Biological significance of HORMA domain containing protein 1 (HORMAD1) in epithelial ovarian carcinoma.
Cancer Lett. 2013 Apr 28;330(2):123-9. doi: 10.1016/j.canlet.2012.07.001. Epub 2012 Jul 7.
5
Fast gapped-read alignment with Bowtie 2.
Nat Methods. 2012 Mar 4;9(4):357-9. doi: 10.1038/nmeth.1923.
6
Inter-homolog crossing-over and synapsis in Arabidopsis meiosis are dependent on the chromosome axis protein AtASY3.
PLoS Genet. 2012 Feb;8(2):e1002507. doi: 10.1371/journal.pgen.1002507. Epub 2012 Feb 2.
7
Interspecific and interploidal gene flow in Central European Arabidopsis (Brassicaceae).
BMC Evol Biol. 2011 Nov 29;11:346. doi: 10.1186/1471-2148-11-346.
8
The Arabidopsis lyrata genome sequence and the basis of rapid genome size change.
Nat Genet. 2011 May;43(5):476-81. doi: 10.1038/ng.807. Epub 2011 Apr 10.
9
A framework for variation discovery and genotyping using next-generation DNA sequencing data.
Nat Genet. 2011 May;43(5):491-8. doi: 10.1038/ng.806. Epub 2011 Apr 10.
10
Pathways to meiotic recombination in Arabidopsis thaliana.
New Phytol. 2011 May;190(3):523-44. doi: 10.1111/j.1469-8137.2011.03665.x. Epub 2011 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验