Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, MA, 02138, USA.
School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
Curr Biol. 2013 Nov 4;23(21):2151-6. doi: 10.1016/j.cub.2013.08.059. Epub 2013 Oct 17.
Whole genome duplication (WGD) is a major factor in the evolution of multicellular eukaryotes, yet by doubling the number of homologs, WGD severely challenges reliable chromosome segregation, a process conserved across kingdoms. Despite this, numerous genome-duplicated (polyploid) species persist in nature, indicating early problems can be overcome. Little is known about which genes are involved--only one has been molecularly characterized. To gain new insights into the molecular basis of adaptation to polyploidy, we investigated genome-wide patterns of differentiation between natural diploids and tetraploids of Arabidopsis arenosa, an outcrossing relative of A. thaliana. We first show that diploids are not preadapted to polyploid meiosis. We then use a genome scanning approach to show that although polymorphism is extensively shared across ploidy levels, there is strong ploidy-specific differentiation in 39 regions spanning 44 genes. These are discrete, mostly single-gene peaks of sharply elevated differentiation. Among these peaks are eight meiosis genes whose encoded proteins coordinate a specific subset of early meiotic functions, suggesting these genes comprise a polygenic solution to WGD-associated chromosome segregation challenges. Our findings indicate that even conserved meiotic processes can be capable of nimble evolutionary shifts when required.
全基因组复制(WGD)是多细胞真核生物进化的主要因素,但 WGD 将同源物的数量加倍,严重挑战了可靠的染色体分离,这一过程在各个领域都得到了保守。尽管如此,自然界中仍有许多基因组复制(多倍体)物种存在,这表明早期的问题是可以克服的。目前还不太清楚哪些基因参与其中——只有一个基因在分子上被描述过。为了深入了解适应多倍体的分子基础,我们研究了拟南芥近亲拟南芥自然二倍体和四倍体之间全基因组分化的模式。我们首先表明,二倍体并没有预先适应多倍体减数分裂。然后,我们使用基因组扫描方法表明,尽管多态性在不同倍性水平上广泛共享,但在跨越 44 个基因的 39 个区域中存在强烈的倍性特异性分化。这些是离散的、主要是单基因的高度分化峰值。在这些峰中,有八个减数分裂基因,其编码的蛋白质协调特定的早期减数分裂功能子集,这表明这些基因构成了多基因解决方案,以应对与 WGD 相关的染色体分离挑战。我们的发现表明,即使是保守的减数分裂过程,在需要时也能够进行灵活的进化转变。