Suppr超能文献

γ-氨基丁酸通透酶 GabP 是枯草芽孢杆菌的第三个脯氨酸转运蛋白。

The γ-aminobutyrate permease GabP serves as the third proline transporter of Bacillus subtilis.

机构信息

Philipps University Marburg, Department of Biology, Laboratory for Microbiology, Marburg, Germany.

出版信息

J Bacteriol. 2014 Feb;196(3):515-26. doi: 10.1128/JB.01128-13. Epub 2013 Oct 18.

Abstract

PutP and OpuE serve as proline transporters when this imino acid is used by Bacillus subtilis as a nutrient or as an osmostress protectant, respectively. The simultaneous inactivation of the PutP and OpuE systems still allows the utilization of proline as a nutrient. This growth phenotype pointed to the presence of a third proline transport system in B. subtilis. We took advantage of the sensitivity of a putP opuE double mutant to the toxic proline analog 3,4-dehydro-dl-proline (DHP) to identify this additional proline uptake system. DHP-resistant mutants were selected and found to be defective in the use of proline as a nutrient. Whole-genome resequencing of one of these strains provided the lead that the inactivation of the γ-aminobutyrate (GABA) transporter GabP was responsible for these phenotypes. DNA sequencing of the gabP gene in 14 additionally analyzed DHP-resistant strains confirmed this finding. Consistently, each of the DHP-resistant mutants was defective not only in the use of proline as a nutrient but also in the use of GABA as a nitrogen source. The same phenotype resulted from the targeted deletion of the gabP gene in a putP opuE mutant strain. Hence, the GabP carrier not only serves as an uptake system for GABA but also functions as the third proline transporter of B. subtilis. Uptake studies with radiolabeled GABA and proline confirmed this conclusion and provided information on the kinetic parameters of the GabP carrier for both of these substrates.

摘要

当枯草芽孢杆菌将脯氨酸作为营养物质或渗透压保护剂时,PutP 和 OpuE 分别作为脯氨酸转运蛋白发挥作用。同时失活 PutP 和 OpuE 系统仍然允许脯氨酸被用作营养物质。这种生长表型表明枯草芽孢杆菌中存在第三种脯氨酸转运系统。我们利用 putP opuE 双突变体对毒性脯氨酸类似物 3,4-脱氢-dl-脯氨酸 (DHP) 的敏感性来鉴定这种额外的脯氨酸摄取系统。选择对 DHP 具有抗性的突变体,并发现它们在利用脯氨酸作为营养物质方面存在缺陷。其中一个菌株的全基因组重测序提供了线索,表明 γ-氨基丁酸 (GABA) 转运蛋白 GabP 的失活是这些表型的原因。对 14 个另外分析的 DHP 抗性菌株的 gabP 基因进行 DNA 测序证实了这一发现。一致地,每个 DHP 抗性突变体不仅在利用脯氨酸作为营养物质方面存在缺陷,而且在利用 GABA 作为氮源方面也存在缺陷。在 putP opuE 突变体菌株中靶向缺失 gabP 基因也会导致相同的表型。因此,GabP 载体不仅作为 GABA 的摄取系统,还作为枯草芽孢杆菌的第三种脯氨酸转运蛋白发挥作用。用放射性标记的 GABA 和脯氨酸进行的摄取研究证实了这一结论,并提供了关于 GabP 载体对这两种底物的动力学参数的信息。

相似文献

1
The γ-aminobutyrate permease GabP serves as the third proline transporter of Bacillus subtilis.
J Bacteriol. 2014 Feb;196(3):515-26. doi: 10.1128/JB.01128-13. Epub 2013 Oct 18.
4
Proline utilization by Bacillus subtilis: uptake and catabolism.
J Bacteriol. 2012 Feb;194(4):745-58. doi: 10.1128/JB.06380-11. Epub 2011 Dec 2.
5
Proline transport in Salmonella typhimurium: putP permease mutants with altered substrate specificity.
J Bacteriol. 1986 Nov;168(2):590-4. doi: 10.1128/jb.168.2.590-594.1986.
6
Identification and characterization of γ-aminobutyric acid uptake system GabPCg (NCgl0464) in Corynebacterium glutamicum.
Appl Environ Microbiol. 2012 Apr;78(8):2596-601. doi: 10.1128/AEM.07406-11. Epub 2012 Feb 3.
9
A cryptic proline permease in Salmonella typhimurium.
Microbiology (Reading). 1997 Sep;143 ( Pt 9):2903-2911. doi: 10.1099/00221287-143-9-2903.

引用本文的文献

1
Bacterial osmoprotectants-a way to survive in saline conditions and potential crop allies.
FEMS Microbiol Rev. 2025 Jan 14;49. doi: 10.1093/femsre/fuaf020.
2
The DnaJK chaperone of post-transcriptionally regulates gene expression through the YlxR(RnpM)/RNase P complex.
mBio. 2025 Mar 12;16(3):e0405324. doi: 10.1128/mbio.04053-24. Epub 2025 Feb 11.
4
Control of asparagine homeostasis in : identification of promiscuous amino acid importers and exporters.
J Bacteriol. 2024 Feb 22;206(2):e0042023. doi: 10.1128/jb.00420-23. Epub 2024 Jan 9.
5
How To Deal with Toxic Amino Acids: the Bipartite AzlCD Complex Exports Histidine in .
J Bacteriol. 2022 Dec 20;204(12):e0035322. doi: 10.1128/jb.00353-22. Epub 2022 Nov 15.
6
Toward the Complete Functional Characterization of a Minimal Bacterial Proteome.
J Phys Chem B. 2022 Sep 15;126(36):6820-6834. doi: 10.1021/acs.jpcb.2c04188. Epub 2022 Sep 1.
7
Encodes a High-Specificity Proline Permease in Candida albicans.
mBio. 2022 Feb 22;13(1):e0314221. doi: 10.1128/mbio.03142-21. Epub 2022 Jan 25.
10
Role of Proline in Pathogen and Host Interactions.
Antioxid Redox Signal. 2019 Feb 1;30(4):683-709. doi: 10.1089/ars.2017.7335. Epub 2018 Feb 2.

本文引用的文献

1
Amino acids in the rhizosphere: from plants to microbes.
Am J Bot. 2013 Sep;100(9):1692-705. doi: 10.3732/ajb.1300033. Epub 2013 Aug 15.
3
Properties, metabolisms, and applications of (L)-proline analogues.
Appl Microbiol Biotechnol. 2013 Aug;97(15):6623-34. doi: 10.1007/s00253-013-5022-7. Epub 2013 Jun 19.
4
Genome-wide identification of Bacillus subtilis CodY-binding sites at single-nucleotide resolution.
Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):7026-31. doi: 10.1073/pnas.1300428110. Epub 2013 Apr 8.
5
Bacillus subtilis biofilm induction by plant polysaccharides.
Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):E1621-30. doi: 10.1073/pnas.1218984110. Epub 2013 Apr 8.
6
An updated metabolic view of the Bacillus subtilis 168 genome.
Microbiology (Reading). 2013 Apr;159(Pt 4):757-770. doi: 10.1099/mic.0.064691-0. Epub 2013 Feb 21.
7
Rate of environmental change determines stress response specificity.
Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):4140-5. doi: 10.1073/pnas.1213060110. Epub 2013 Feb 13.
9
Osmoprotection of Bacillus subtilis through import and proteolysis of proline-containing peptides.
Appl Environ Microbiol. 2013 Jan;79(2):576-87. doi: 10.1128/AEM.01934-12. Epub 2012 Nov 9.
10
Synthesis, release, and recapture of compatible solute proline by osmotically stressed Bacillus subtilis cells.
Appl Environ Microbiol. 2012 Aug;78(16):5753-62. doi: 10.1128/AEM.01040-12. Epub 2012 Jun 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验