Skieterska Kamila, Duchou Jolien, Lintermans Béatrice, Van Craenenbroeck Kathleen
Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Ghent University-UGent, Ghent, Belgium.
Methods Cell Biol. 2013;117:323-40. doi: 10.1016/B978-0-12-408143-7.00017-7.
With 356 members in the human genome, G protein-coupled receptors (GPCRs) constitute the largest family of proteins involved in signal transduction across biological membranes. GPCRs are integral membrane proteins featuring a conserved structural topology with seven transmembrane domains. By recognizing a large diversity of hormones and neurotransmitters, GPCRs mediate signal transduction pathways through their interactions with both extracellular small-molecule ligands and intracellular G proteins to initiate appropriate cellular signaling cascades. As there is a clear link between GPCRs and several disorders, GPCRs currently constitute the largest family of proteins targeted by marketed pharmaceuticals. Therefore, a detailed understanding of the biogenesis of these receptors and of GPCR-protein complex assembly can help to answer some important questions. In this chapter, we will discuss several methods to isolate GPCRs and to study, via coimmunoprecipitation, protein-protein interactions. Special attention will be given to GPCR dimerization, which often starts already in the endoplasmic reticulum and influences the maturation of the receptor. Next, we will also explain an elegant tool to study GPCR biogenesis based on the glycosylation pattern of the receptor of interest.
G蛋白偶联受体(GPCR)在人类基因组中有356个成员,是参与跨生物膜信号转导的最大蛋白质家族。GPCR是整合膜蛋白,具有由七个跨膜结构域组成的保守结构拓扑。通过识别多种激素和神经递质,GPCR通过与细胞外小分子配体和细胞内G蛋白的相互作用介导信号转导途径,以启动适当的细胞信号级联反应。由于GPCR与多种疾病之间存在明确联系,GPCR目前是市售药物靶向的最大蛋白质家族。因此,详细了解这些受体的生物发生过程以及GPCR-蛋白质复合物的组装有助于回答一些重要问题。在本章中,我们将讨论几种分离GPCR并通过免疫共沉淀研究蛋白质-蛋白质相互作用的方法。我们将特别关注GPCR二聚化,它通常在内质网中就已开始,并影响受体的成熟。接下来,我们还将解释一种基于感兴趣受体的糖基化模式来研究GPCR生物发生的精妙工具。