a University of Alberta, Faculty of Pharmacy and Pharmaceutical Sciences, Edmonton, AB T6G 2E1, Canada.
Can J Physiol Pharmacol. 2013 Oct;91(10):783-90. doi: 10.1139/cjpp-2012-0254. Epub 2013 Jul 4.
We have investigated the effect of NaHCO3 on menadione redox cycling and cytotoxicity. A cell-free system utilized menadione and ascorbic acid to catalyze a redox cycle, and we utilized murine hepatoma (Hepa 1c1c7) cells for in vitro experiments. Experiments were performed using low (2 mmol/L) and physiological (25 mmol/L) levels of NaHCO3 in buffer equilibrated to physiological pH. Using oximetry, ascorbic acid oxidation, and ascorbyl radical detection, we found that menadione redox cycling was enhanced by NaHCO3. Furthermore, Hepa 1c1c7 cells treated with menadione demonstrated cytotoxicity that was significantly increased with physiological concentrations of NaHCO3 in the media, compared with low levels of NaHCO3. Interestingly, the inhibition of superoxide dismutase (SOD) with 2 different metal chelators was associated with a protective effect against menadione cytotoxicity. Using isolated protein, we found a significant increase in protein carbonyls with menadione-ascorbate-SOD with physiological NaHCO3 levels; low NaHCO3 or SOD-free reactions produced lower levels of protein carbonyls. In conclusion, these findings suggest that the hydrogen peroxide generated by menadione redox cycling together with NaHCO3-CO2 are potential substrates for SOD peroxidase activity that can lead to carbonate-radical-enhanced cytotoxicity. These findings demonstrate the importance of NaHCO3 in menadione redox cycling and cytotoxicity.
我们研究了碳酸氢钠对 menadione 氧化还原循环和细胞毒性的影响。在无细胞体系中,我们利用 menadione 和抗坏血酸来催化氧化还原循环,并在体外实验中使用了鼠肝癌(Hepa 1c1c7)细胞。实验在缓冲液中使用低(2mmol/L)和生理(25mmol/L)浓度的碳酸氢钠,并使缓冲液的 pH 值与生理 pH 值平衡。通过血氧测定法、抗坏血酸氧化和抗坏血基自由基检测,我们发现 menadione 氧化还原循环被碳酸氢钠增强。此外,用 menadione 处理的 Hepa 1c1c7 细胞表现出的细胞毒性,在培养基中存在生理浓度的碳酸氢钠时,比低浓度的碳酸氢钠时显著增加。有趣的是,用两种不同的金属螯合剂抑制超氧化物歧化酶(SOD)与 menadione 细胞毒性的保护作用有关。使用分离的蛋白质,我们发现,在生理浓度的碳酸氢钠存在下,menadione-抗坏血酸-SOD 会显著增加蛋白质羰基;低浓度的碳酸氢钠或不含 SOD 的反应产生较低水平的蛋白质羰基。总之,这些发现表明,menadione 氧化还原循环产生的过氧化氢与碳酸氢钠-二氧化碳一起,可能是 SOD 过氧化物酶活性的潜在底物,这可能导致碳酸盐自由基增强的细胞毒性。这些发现表明了碳酸氢钠在 menadione 氧化还原循环和细胞毒性中的重要性。