Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Gangwon‑do 200‑702, Republic of Korea.
Mol Med Rep. 2013 Dec;8(6):1729-33. doi: 10.3892/mmr.2013.1743. Epub 2013 Oct 18.
Lysophosphatidic acid (LPA) is a lipid growth factor that regulates diverse cell functions, including cell proliferation, survival and apoptosis. LPA has been demonstrated to be involved in the regulation of cortical neurogenesis by increasing the survival of neural precursors. Previously, we reported that LPA stimulated the inactivation of glycogen synthase kinase 3 (GSK3) via the G protein-coupled LPA1 and LPA2 receptors, by which apoptosis is suppressed in H19-7 cells [an embryonic hippocampal progenitor cell (HPC) line]. Increasing numbers of studies have demonstrated that certain G protein-coupled receptors activate β-catenin/T cell factor (TCF) signaling independently of Wnt, which is involved in cell fate determination, cell proliferation and cell survival. To determine whether LPA activates β-catenin-mediated transcriptional activation pathways and whether β-catenin/TCF signaling is involved in neurogenesis by controlling the survival of neural precursors, β-catenin/TCF signaling cascades induced by LPA were investigated in the HPCs. Activation of β-catenin/TCF signaling was determined by the nuclear translocation of β-catenin and the transcriptional activation of a TCF reporter gene. The activation of β-catenin/TCF signaling was blocked by pertussis toxin (PTX) and a protein kinase C (PKC) inhibitor. The expression of a constitutively active mutated form of GSK3β activated β-catenin/TCF signaling to comparable levels to those induced by LPA, and protected against apoptosis in differentiating H19-7 cells. These results showed that LPA activates β-catenin/TCF signaling in a PTX- and PKC-dependent manner, which contributes to LPA-induced cell survival in the HPCs. Activation of β-catenin/TCF signaling by LPA may be involved in neurogenesis by controlling the survival of neural precursors.
溶血磷脂酸(LPA)是一种脂质生长因子,可调节多种细胞功能,包括细胞增殖、存活和凋亡。LPA 已被证明通过增加神经前体细胞的存活来参与皮质神经发生的调节。先前,我们报道 LPA 通过 G 蛋白偶联的 LPA1 和 LPA2 受体刺激糖原合酶激酶 3(GSK3)的失活,从而抑制 H19-7 细胞[一种胚胎海马祖细胞(HPC)系]中的细胞凋亡。越来越多的研究表明,某些 G 蛋白偶联受体通过 Wnt 独立激活β-连环蛋白/T 细胞因子(TCF)信号通路,该信号通路参与细胞命运决定、细胞增殖和细胞存活。为了确定 LPA 是否激活β-连环蛋白介导的转录激活途径以及β-连环蛋白/TCF 信号通路是否通过控制神经前体细胞的存活参与神经发生,研究了 LPA 在 HPC 中诱导的β-连环蛋白/TCF 信号级联。通过β-连环蛋白的核易位和 TCF 报告基因的转录激活来确定β-连环蛋白/TCF 信号的激活。β-连环蛋白/TCF 信号的激活被百日咳毒素(PTX)和蛋白激酶 C(PKC)抑制剂阻断。组成型激活的 GSK3β 突变形式的表达激活β-连环蛋白/TCF 信号至与 LPA 诱导的信号相当的水平,并防止分化的 H19-7 细胞发生凋亡。这些结果表明,LPA 通过 PTX 和 PKC 依赖性方式激活β-连环蛋白/TCF 信号,这有助于 LPA 在 HPC 中诱导细胞存活。LPA 通过β-连环蛋白/TCF 信号的激活可能通过控制神经前体细胞的存活参与神经发生。