Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada.
J Mol Evol. 2013 Dec;77(5-6):231-45. doi: 10.1007/s00239-013-9589-5. Epub 2013 Oct 22.
Transducin is a heterotrimeric G protein that plays a critical role in phototransduction in the rod and cone photoreceptor cells of the vertebrate retina. Rods, highly sensitive cells that recover from photoactivation slowly, underlie dim-light vision, whereas cones are less sensitive, recover more quickly, and underlie bright-light vision. Transducin deactivation is a critical step in photoreceptor recovery and may underlie the functional distinction between rods and cones. Rods and cones possess distinct transducin α subunits, yet they share a common deactivation mechanism, the GTPase activating protein (GAP) complex. Here, we used codon models to examine patterns of sequence evolution in rod (GNAT1) and cone (GNAT2) α subunits. Our results indicate that purifying selection is the dominant force shaping GNAT1 and GNAT2 evolution, but that GNAT2 has additionally been subject to positive selection operating at multiple phylogenetic scales; phylogeny-wide analysis identified several sites in the GNAT2 helical domain as having substantially elevated dN/dS estimates, and branch-site analysis identified several nearby sites as targets of strong positive selection during early vertebrate history. Examination of aligned GNAT and GAP complex crystal structures revealed steric clashes between several positively selected sites and the deactivating GAP complex. This suggests that GNAT2 sequence variation could play an important role in adaptive evolution of the vertebrate visual system via effects on photoreceptor deactivation kinetics and provides an alternative perspective to previous work that focused instead on the effect of GAP complex concentration. Our findings thus further the understanding of the molecular biology, physiology, and evolution of vertebrate visual systems.
转导蛋白是一种异三聚体 G 蛋白,在脊椎动物视网膜的杆状和锥状光感受器细胞的光转导中起着关键作用。杆状细胞是高度敏感的细胞,其光激活后恢复缓慢,是暗视觉的基础;而锥状细胞则不那么敏感,恢复得更快,是明视觉的基础。转导蛋白的失活是光感受器恢复的关键步骤,可能是杆状细胞和锥状细胞功能区别的基础。杆状细胞和锥状细胞具有不同的转导蛋白 α 亚基,但它们共享一个共同的失活机制,即 GTP 酶激活蛋白 (GAP) 复合物。在这里,我们使用密码子模型来研究杆状细胞(GNAT1)和锥状细胞(GNAT2)α 亚基的序列进化模式。我们的结果表明,纯化选择是塑造 GNAT1 和 GNAT2 进化的主要力量,但 GNAT2 还受到在多个进化尺度上起作用的正选择的影响;系统发育范围的分析确定了 GNAT2 螺旋结构域中的几个位点具有显著升高的 dN/dS 估计值,分支位点分析确定了几个附近的位点在早期脊椎动物历史中是强烈正选择的目标。对对齐的 GNAT 和 GAP 复合物晶体结构的检查表明,几个正选择位点与失活的 GAP 复合物之间存在空间冲突。这表明,GNAT2 序列变异可能通过对光感受器失活动力学的影响,在脊椎动物视觉系统的适应性进化中发挥重要作用,并为以前专注于 GAP 复合物浓度影响的工作提供了另一种视角。我们的发现进一步加深了对脊椎动物视觉系统的分子生物学、生理学和进化的理解。