Suppr超能文献

数值模拟大密度比双流体湍流混合及其在瑞利-泰勒不稳定性中的应用。

Numerical simulations of two-fluid turbulent mixing at large density ratios and applications to the Rayleigh-Taylor instability.

机构信息

Los Alamos National Laboratory, Los Alamos, NM 87544, USA.

出版信息

Philos Trans A Math Phys Eng Sci. 2013 Oct 21;371(2003):20120185. doi: 10.1098/rsta.2012.0185. Print 2013 Nov 28.

Abstract

A tentative review is presented of various approaches for numerical simulations of two-fluid gaseous mixtures at high density ratios, as they have been applied to the Rayleigh-Taylor instability (RTI). Systems exhibiting such RTI behaviour extend from atomistic sizes to scales where the continuum approximation becomes valid. Each level of description can fit into a hierarchy of theoretical models and the governing equations appropriate for each model, with their assumptions, are presented. In particular, because the compressible to incompressible limit of the Navier-Stokes equations is not unique and understanding compressibility effects in the RTI critically depends on having the appropriate basis for comparison, two relevant incompressible limits are presented. One of these limits has not been considered before. Recent results from RTI simulations, spanning the levels of description presented, are reviewed in connection to the material mixing problem. Owing to the computational limitations, most in-depth RTI results have been obtained for the incompressible case. Two such results, concerning the asymmetry of the mixing and small-scale anisotropy anomaly, as well as the possibility of a mixing transition in the RTI, are surveyed. New lines for further investigation are suggested and it is hoped that bringing together such diverse levels of description may provide new ideas and increased motivation for studying such flows.

摘要

本文对各种用于模拟高密度比两流体气体混合物的数值方法进行了初步回顾,这些方法已应用于瑞利-泰勒不稳定性(RTI)。表现出这种 RTI 行为的系统从原子尺度扩展到连续体近似有效的尺度。每个描述级别都可以归入一个理论模型层次结构,为每个模型呈现了适当的控制方程及其假设。特别是,由于纳维-斯托克斯方程的可压缩到不可压缩的极限不是唯一的,并且理解 RTI 中的可压缩性效应关键取决于具有适当的比较基础,因此提出了两个相关的不可压缩极限。其中一个极限以前没有被考虑过。与材料混合问题相关,对跨越所呈现描述级别的 RTI 模拟的最新结果进行了回顾。由于计算限制,最深入的 RTI 结果已经在不可压缩的情况下获得。调查了两个这样的结果,即混合的不对称性和小尺度各向异性异常,以及 RTI 中混合转变的可能性。提出了进一步研究的新方向,希望将这些不同的描述级别结合起来,为研究这种流动提供新的思路和动力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验