Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India,
Glycoconj J. 2014 Jan;31(1):71-87. doi: 10.1007/s10719-013-9504-8. Epub 2013 Oct 23.
The linkage region constituents, 2-deoxy-2-acetamido-β-D-glucopyranose (GlcNAc) and L-asparagine (Asn) are conserved in the N-glycoproteins of all eukaryotes. Elucidation of the structure and conformation of the linkage region of glycoproteins is important to understand the presentation and dynamics of the carbohydrate chain at the protein/cell surface. Earlier crystallographic studies using monosaccharide models and analogs of N-glycoprotein linkage region have shown that the N-glycosidic torsion, ϕN, is more influenced by the structural variation in the sugar part than that of the aglycon moiety. To access the influence of distal sugar as well as interglycosidic linkage (α or β) on the N-glycosidic torsion angles, cellobiosyl and maltosyl alkanamides have been synthesized and structural features of seven of these analogs have been characterized by X-ray crystallography. Comparative analysis of the seven disaccharide analogs with the reported monosaccharide analogs showed that the ϕN value of cellobiosyl analogs deviate ~9° with respect to GlcβNHAc. In the case of maltosyl analogs, deviation is more than 18°. These deviations indicate that the N-glycosidic torsion is influenced by addition of distal sugar as well as with respect to inter glycosidic linkage (α or β); it is less influenced by changes occurring at the aglycon. The χ₂ value of alkanamide derived from glucose, cellobiose and maltose exhibit a large range of variations (from 1.6° to -109.9°). This large span of χ₂ value suggests the greater degree of rotational freedom around C1'-C2' bond which is restricted in GlcNAc alkanamides. The present finding explicitly proved the importance of molecular architecture in the N-glycoproteins linkage region to maintain the linearity, planarity and rigidity. These factors are necessary for N-glycan to serve role in inter- as well as intramolecular carbohydrate-protein interactions.
连接区成分 2-脱氧-2-乙酰氨基-β-D-吡喃葡萄糖(GlcNAc)和 L-天冬酰胺(Asn)在所有真核生物的 N-糖蛋白中都保守。阐明糖蛋白连接区的结构和构象对于理解蛋白质/细胞表面碳水化合物链的呈现和动态非常重要。早期使用单糖模型和 N-糖蛋白连接区类似物的晶体学研究表明,N-糖苷扭转角 ϕN 受糖部分结构变化的影响大于糖苷部分的影响。为了研究远端糖以及糖苷键(α 或 β)对 N-糖苷扭转角的影响,合成了纤维二糖基和麦芽三糖基烷酰胺,并通过 X 射线晶体学对其中七种类似物的结构特征进行了表征。将这七种二糖类似物与报道的单糖类似物进行比较分析表明,纤维二糖类似物的 ϕN 值相对于 GlcβNHAc 偏离约 9°。在麦芽三糖类似物的情况下,偏差超过 18°。这些偏差表明,N-糖苷扭转受到添加远端糖以及糖苷键(α 或 β)的影响;它受糖苷部分变化的影响较小。葡萄糖、纤维二糖和麦芽糖衍生的烷酰胺的 χ₂ 值表现出很大的变化范围(从 1.6°到-109.9°)。 χ₂ 值的这种大跨度表明 C1'-C2' 键周围的旋转自由度较大,而 GlcNAc 烷酰胺则受到限制。目前的发现明确证明了分子结构在 N-糖蛋白连接区中的重要性,以保持线性、平面和刚性。这些因素对于 N-聚糖在分子内和分子间碳水化合物-蛋白质相互作用中发挥作用是必要的。