Boylan Center for Cellular and Molecular Physiology, Mount Desert Island Biological Laboratory, Bar Harbor, Maine.
Am J Physiol Cell Physiol. 2013 Dec 15;305(12):C1257-64. doi: 10.1152/ajpcell.00176.2013. Epub 2013 Oct 23.
Proteostasis is the maintenance of the proper function of cellular proteins. Hypertonic stress disrupts proteostasis and causes rapid and widespread protein aggregation and misfolding in the nematode Caenorhabditis elegans. Optimal survival in hypertonic environments requires degradation of damaged proteins. Inhibition of protein synthesis occurs in response to diverse environmental stressors and may function in part to minimize stress-induced protein damage. We recently tested this idea directly and demonstrated that translation inhibition by acute exposure to cycloheximide suppresses hypertonicity-induced aggregation of polyglutamine::YFP (Q35::YFP) in body wall muscle cells. In this article, we further characterized the relationship between protein synthesis and hypertonic stress-induced protein damage. We demonstrate that inhibition of translation reduces hypertonic stress-induced formation and growth of Q35::YFP, Q44::YFP, and α-synuclein aggregates; misfolding of paramyosin and ras GTPase; and aggregation of multiple endogenous proteins expressed in diverse cell types. Activation of general control nonderepressible-2 (GCN-2) kinase signaling during hypertonic stress inhibits protein synthesis via phosphorylation of eukaryotic initiation factor-2α (eIF-2α). Inhibition of GCN-2 activation prevents the reduction in translation rate and greatly exacerbates the formation and growth of Q35::YFP aggregates and the aggregation of endogenous proteins. The current studies together with our previous work provide the first direct demonstration that hypertonic stress-induced reduction in protein synthesis minimizes protein aggregation and misfolding. Reduction in translation rate also serves as a signal that activates osmoprotective gene expression. The cellular proteostasis network thus plays a critical role in minimizing hypertonic stress-induced protein damage, in degrading stress-damaged proteins, and in cellular osmosensing and signaling.
蛋白质稳态是细胞蛋白质正常功能的维持。高渗应激破坏蛋白质稳态,并导致线虫秀丽隐杆线虫中快速广泛的蛋白质聚集和错误折叠。在高渗环境中最佳生存需要降解受损蛋白质。蛋白质合成的抑制发生在响应多种环境胁迫,并且可能在部分功能上最小化应激诱导的蛋白质损伤。我们最近直接测试了这个想法,并证明急性暴露于环己酰亚胺抑制聚谷氨酰胺::YFP(Q35::YFP)在体壁肌肉细胞中的高渗诱导聚集。在本文中,我们进一步表征了蛋白质合成与高渗应激诱导的蛋白质损伤之间的关系。我们证明翻译抑制减少高渗应激诱导的 Q35::YFP、Q44::YFP 和α-突触核蛋白聚集体的形成和生长;副肌球蛋白和 ras GTPase 的错误折叠;以及多种在不同细胞类型中表达的内源性蛋白质的聚集。高渗应激期间普遍控制非抑制 2(GCN-2)激酶信号的激活通过真核起始因子 2α(eIF-2α)的磷酸化抑制蛋白质合成。GCN-2 激活的抑制阻止翻译速率的降低,并极大地加剧 Q35::YFP 聚集体的形成和生长以及内源性蛋白质的聚集。当前的研究与我们以前的工作一起提供了第一个直接证明高渗应激诱导的蛋白质合成减少最小化蛋白质聚集和错误折叠的证据。翻译速率的降低也作为激活渗透保护基因表达的信号。因此,细胞蛋白质稳态网络在最小化高渗应激诱导的蛋白质损伤、降解应激损伤的蛋白质以及细胞渗透感应和信号转导中发挥关键作用。