通过分子动力学模拟揭示基质金属蛋白酶-2催化结构域与三螺旋肽复合物的分子结构。

Unraveling the molecular structure of the catalytic domain of matrix metalloproteinase-2 in complex with a triple-helical peptide by means of molecular dynamics simulations.

机构信息

Departamento de Química Física y Analítica, Universidad de Oviedo , Julián Clavería 8, Oviedo (Asturias) 33006, Spain.

出版信息

Biochemistry. 2013 Nov 26;52(47):8556-69. doi: 10.1021/bi401144p. Epub 2013 Nov 11.

Abstract

Herein, we present the results of a computational study that employed various simulation methodologies to build and validate a series of molecular models of a synthetic triple-helical peptide (fTHP-5) both in its native state and in a prereactive complex with the catalytic domain of the MMP-2 enzyme. First, the structure and dynamical properties of the fTHP-5 substrate are investigated by means of molecular dynamics (MD) simulations. Then, the propensity of each of the three peptide chains in fTHP-5 to be distorted around the scissile peptide bond is assessed by carrying out potential of mean force calculations. Subsequently, the distorted geometries of fTHP-5 are docked within the MMP-2 active site following a semirigid protocol, and the most stable docked structures are fully relaxed and characterized by extensive MD simulations in explicit solvent. Following a similar approach, we also investigate a hypothetical ternary complex formed between two MMP-2 catalytic units and a single fTHP-5 molecule. Overall, our models for the MMP-2/fTHP-5 complexes unveil the extent to which the triple helix is distorted to allow the accommodation of an individual peptide chain within the MMP active site.

摘要

在此,我们呈现了一项计算研究的结果,该研究采用了各种模拟方法来构建和验证一系列合成三螺旋肽(fTHP-5)的分子模型,包括其天然状态和与 MMP-2 酶催化结构域的预反应复合物。首先,通过分子动力学(MD)模拟研究了 fTHP-5 底物的结构和动力学特性。然后,通过进行平均力势能计算评估了 fTHP-5 中三条肽链中每一条在切割肽键周围发生扭曲的倾向。随后,根据半刚性方案将扭曲的 fTHP-5 几何形状对接至 MMP-2 活性位点内,并且对最稳定的对接结构进行了充分的松弛,并在明溶剂中进行了广泛的 MD 模拟。采用类似的方法,我们还研究了两个 MMP-2 催化单元和单个 fTHP-5 分子之间形成的假设三元复合物。总体而言,我们的 MMP-2/fTHP-5 复合物模型揭示了三螺旋被扭曲以允许单个肽链容纳在 MMP 活性位点内的程度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索