Suppr超能文献

多尺度交叉近似熵分析作为正常和糖尿病患者心电图 R-R 间期和 PPG 脉搏幅度序列之间复杂性的测量方法。

Multiscale cross-approximate entropy analysis as a measurement of complexity between ECG R-R interval and PPG pulse amplitude series among the normal and diabetic subjects.

机构信息

Department of Electrical Engineering, National Dong Hwa University, Hualien 97401, Taiwan.

出版信息

Comput Math Methods Med. 2013;2013:231762. doi: 10.1155/2013/231762. Epub 2013 Sep 23.

Abstract

Physiological signals often show complex fluctuation (CF) under the dual influence of temporal and spatial scales, and CF can be used to assess the health of physiologic systems in the human body. This study applied multiscale cross-approximate entropy (MC-ApEn) to quantify the complex fluctuation between R-R intervals series and photoplethysmography amplitude series. All subjects were then divided into the following two groups: healthy upper middle-aged subjects (Group 1, age range: 41-80 years, n = 27) and upper middle-aged subjects with type 2 diabetes (Group 2, age range: 41-80 years, n = 24). There are significant differences of heart rate variability, LHR, between Groups 1 and 2 (1.94 ± 1.21 versus 1.32 ± 1.00, P = 0.031). Results demonstrated differences in sum of large scale MC-ApEn (MC-ApEn(LS)) (5.32 ± 0.50 versus 4.74 ± 0.78, P = 0.003). This parameter has a good agreement with pulse-pulse interval and pulse amplitude ratio (PAR), a simplified assessment for baroreflex activity. In conclusion, this study employed the MC-ApEn method, integrating multiple temporal and spatial scales, to quantify the complex interaction between the two physical signals. The MC-ApEn(LS) parameter could accurately reflect disease process in diabetics and might be another way for assessing the autonomic nerve function.

摘要

生理信号在时间和空间尺度的双重影响下通常表现出复杂的波动(CF),并且 CF 可用于评估人体生理系统的健康状况。本研究应用多尺度互近似熵(MC-ApEn)来量化 R-R 间期序列和光体积描记图幅度序列之间的复杂波动。然后,将所有受试者分为以下两组:健康的中老年受试者(第 1 组,年龄范围:41-80 岁,n = 27)和患有 2 型糖尿病的中老年受试者(第 2 组,年龄范围:41-80 岁,n = 24)。第 1 组和第 2 组之间的心率变异性(LHR)存在显著差异(1.94 ± 1.21 与 1.32 ± 1.00,P = 0.031)。结果表明,大尺度 MC-ApEn(MC-ApEn(LS))总和存在差异(5.32 ± 0.50 与 4.74 ± 0.78,P = 0.003)。该参数与脉搏-脉搏间隔和脉搏幅度比(PAR)具有良好的一致性,PAR 是对压力反射活动的简化评估。总之,本研究采用 MC-ApEn 方法,整合多个时间和空间尺度,定量分析了两个物理信号之间的复杂相互作用。MC-ApEn(LS)参数可以准确反映糖尿病患者的疾病进程,可能是评估自主神经功能的另一种方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d85c/3794634/dc938b98a7e1/CMMM2013-231762.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验