Suppr超能文献

铜铟硒量子点敏化太阳能电池。

Copper-indium-selenide quantum dot-sensitized solar cells.

机构信息

Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 151-742, Republic of Korea.

出版信息

Phys Chem Chem Phys. 2013 Dec 21;15(47):20517-25. doi: 10.1039/c3cp54270j. Epub 2013 Nov 1.

Abstract

We present a new synthetic process of near infrared (NIR)-absorbing copper-indium-selenide (CISe) quantum dots (QDs) and their applications to efficient and completely heavy-metal-free QD-sensitized solar cells (QDSCs). Lewis acid-base reaction of metal iodides and selenocarbamate enabled us to produce chalcopyrite-structured CISe QDs with controlled sizes and compositions. Furthermore, gram-scale production of CISe QDs was achieved with a high reaction yield of ~73%, which is important for the commercialization of low-cost photovoltaic (PV) devices. By changing the size and composition, electronic band alignment of CISe QDs could be finely tuned to optimize the energetics of the effective light absorption and injection of electrons into the TiO2 conduction band (CB). These energy-band-engineered QDs were applied to QDSCs, and the quantum-confinement effect on the PV performances was clearly demonstrated. Our best cell yielded a conversion efficiency of 4.30% under AM1.5G one sun illumination, which is comparable to the performance of the best solar cells based on toxic lead chalcogenide or cadmium chalcogenide QDs.

摘要

我们提出了一种新的近红外(NIR)吸收铜-铟-硒(CISe)量子点(QD)的合成工艺,并将其应用于高效且完全无重金属的量子点敏化太阳能电池(QDSSC)。金属碘化物和硒代氨基甲酸酯的路易斯酸碱反应使我们能够生产出具有可控尺寸和组成的黄铜矿结构 CISe QD。此外,通过这种方法还实现了克级规模的 CISe QD 生产,其反应收率高达约 73%,这对于低成本光伏(PV)器件的商业化非常重要。通过改变尺寸和组成,可以精细调整 CISe QD 的能带排列,以优化有效光吸收和电子注入 TiO2 导带(CB)的能量学。这些能带工程化的 QD 被应用于 QDSSC,并且清楚地证明了量子限制对 PV 性能的影响。我们的最佳电池在 AM1.5G 标准太阳光照射下的转换效率达到了 4.30%,与基于有毒铅硫族化物或镉硫族化物 QD 的最佳太阳能电池的性能相当。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验