Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 645 6th floor, E-08028, Barcelona, Spain.
Amino Acids. 1996 Jun;11(2):225-46. doi: 10.1007/BF00813862.
The cDNAs of mammalian amino acid transporters already identified could be grouped into four families. One of these protein families is composed of the protein rBAT and the heavy chain of the cell surface antigen 4F2 (4F2hc). The cRNAs of rBAT and 4F2hc induce amino acid transport activity via systems b(0,+) -like and y(+)L -like inXenopus oocytes respectively. Surprisingly, neither rBAT nor 4F2hc is very hydrophobic, and they seem to be unable to form a pore in the plasma membrane. This prompted the hypothesis that rBAT and 4F2hc are subunits or modulators of the corresponding amino acid transporters. The association of rBAT with a light subunit of 40kDa has been suggested, and such an association has been demonstrated for 4F2hc.The b(0,+)-like system expressed in oocytes by rBAT cRNA transports L-cystine, L-dibasic and L-neutral amino acids with high-affinity. This transport system shows exchange of amino acids through the plasma membrane ofXenopus oocytes, suggesting a tertiary active transport mechanism. The rBAT gene is mainly expressed in the outer stripe of the outer medulla of the kidney and in the mucosa of the small intestine. The protein localizes to the microvilli of the proximal straight tubules (S3 segment) of the nephron and the mucosa of the small intestine. All this suggested the participation of rBAT in a high-affinity reabsorption system of cystine and dibasic amino acids in kidney and intestine, and indicated rBAT (named SLC3A1 in Gene Data Bank) as a good candidate gene for cystinuria. This is an inherited aminoaciduria due to defective renal and intestinal reabsorption of cystine and dibasic amino acids. The poor solubility of cystine causes the formation of renal cystine calculi. Mutational analysis of the rBAT gene of patients with cystinuria is revealing a growing number (20) of cystinuria-specific mutations, including missense, nonsense, deletions and insertions. Mutations M467T (substitution of methionine 467 residue for threonine) and R270X (stop codon at arginine residue 270) represent approximately half of the cystinuric chromosomes where mutations have been found. Mutation M467T reduces transport activity of rBAT in oocytes. All this demonstrates that mutations in the rBAT gene cause cystinuria.Three types of cystinuria (types, I, II and III) have been described on the basis of the genetic, biochemical and clinical manifestations of the disease. Type I cystinuria has a complete recessive inheritance; type I heterozygotes are totally silent. In contrast, type II and III heterozygotes show, respectively, high or moderate hyperaminoaciduria of cystine and dibasic amino acids. Type III homozygotes show moderate, if any, alteration of intestinal absorption of cystine and dibasic amino acids; type II homozygotes clearly show defective intestinal absorption of these amino acids. To date, all the rBAT cystinuria-specific mutations we have found are associated with type I cystinuria (~70% of the chromosomes studied) but not to types II or III. This strongly suggests genetic heterogeneity for cystinuria. Genetic linkage analysis with markers of the genomic region of rBAT in chromosome 2 (G band 2p16.3) and intragenic markers of rBAT have demonstrated genetic heterogeneity for cystinuria; the rBAT gene is linked to type I cystinuria, but not to type III. Biochemical, genetic and clinical studies are needed to identify the additional cystinuria genes; a low-affinity cystine reabsortion system and the putative light subunit of rBAT are additional candidate genes for cystinuria.
哺乳动物氨基酸转运体的 cDNA 已被鉴定,可以分为四个家族。其中一个蛋白质家族由 rBAT 蛋白和细胞表面抗原 4F2(4F2hc)的重链组成。rBAT 和 4F2hc 的 cRNA 在非洲爪蟾卵母细胞中分别诱导 b(0,+) -样和 y(+)L -样系统的氨基酸转运活性。令人惊讶的是,rBAT 和 4F2hc 都不是很疏水,它们似乎无法在质膜上形成孔。这促使人们假设 rBAT 和 4F2hc 是相应氨基酸转运体的亚基或调节剂。已经提出 rBAT 与 ~40kDa 的轻亚基结合,并且已经证明 4F2hc 存在这种结合。在外胚层卵母细胞中由 rBAT cRNA 表达的 b(0,+) -样系统转运 L-胱氨酸、L-二碱基和 L-中性氨基酸具有高亲和力。这种转运系统通过非洲爪蟾卵母细胞的质膜交换氨基酸,表明是一种主动转运机制。rBAT 基因主要在外髓质外层和小肠黏膜中表达。该蛋白定位于肾单位近端直小管(S3 段)的微绒毛和小肠黏膜。这一切都表明 rBAT 参与了胱氨酸和二碱基氨基酸在肾脏和肠道中的高亲和力重吸收系统,并表明 rBAT(在基因数据库中命名为 SLC3A1)是胱氨酸尿症的良好候选基因。这是一种遗传性氨基酸尿症,由于胱氨酸和二碱基氨基酸在肾脏和肠道中的重吸收缺陷所致。胱氨酸尿症患者的 rBAT 基因突变分析揭示了越来越多的胱氨酸尿症特异性突变(约 20 个),包括错义、无义、缺失和插入。突变 M467T(将蛋氨酸 467 残基替换为苏氨酸)和 R270X(精氨酸残基 270 处的终止密码子)代表已发现突变的胱氨酸尿症染色体的大约一半。突变 M467T 降低 rBAT 在卵母细胞中的转运活性。所有这些都表明 rBAT 基因突变导致胱氨酸尿症。根据疾病的遗传、生化和临床表现,已经描述了三种类型的胱氨酸尿症(I、II 和 III 型)。I 型胱氨酸尿症为完全隐性遗传;I 型杂合子完全沉默。相比之下,II 型和 III 型杂合子分别表现出胱氨酸和二碱基氨基酸的高或中度高氨基酸尿症。III 型纯合子显示出胱氨酸和二碱基氨基酸的肠道吸收中度改变(如果有);II 型纯合子明显显示出这些氨基酸的肠道吸收缺陷。迄今为止,我们发现的所有 rBAT 胱氨酸尿症特异性突变都与 I 型胱氨酸尿症相关(研究的染色体中约 70%),但与 II 型或 III 型无关。这强烈表明胱氨酸尿症存在遗传异质性。用染色体 2(G 带 2p16.3)上 rBAT 的基因组区域的标记和 rBAT 的内含子标记对 rBAT 进行遗传连锁分析表明胱氨酸尿症存在遗传异质性;rBAT 基因与 I 型胱氨酸尿症有关,但与 III 型无关。需要进行生化、遗传和临床研究以确定其他胱氨酸尿症基因;低亲和力胱氨酸重吸收系统和 rBAT 的假定轻亚基是胱氨酸尿症的另一个候选基因。