UCB Pharma SA, Non Clinical DMPK, Braine l'Alleud, Belgium (H.C., M.R., C.D., S.S., J.M.N.); Biogenidec, Cambridge, Massachusetts (C.P.).
Drug Metab Dispos. 2014 Jan;42(1):153-61. doi: 10.1124/dmd.113.054049. Epub 2013 Oct 31.
We identified the enzyme(s) involved in the hydrolysis of the ethyl ester prodrug CDP323 (C28H29BrN403) and characterized its transesterification in the presence of ethanol with special emphasis on the risks of drug-drug interaction. The hydrolysis of CDP323 was evaluated in vitro using human liver and intestinal microsomes and recombinant human carboxylesterases (hCES1 and 2) and was shown to be approximately 20-fold higher in human liver microsomes when compared with human intestinal microsomes and in hCES1 when compared with hCES2. Nonspecific inhibitors of carboxylesterases significantly inhibited the hydrolysis of CDP323 (>80% inhibition) while specific inhibitors of CES2, acetylcholine esterase, arylesterase, and butyrylcholinesterase did not impair the hydrolysis reaction. The effect of ethanol on the kinetic parameters for hydrolysis was investigated, demonstrating that at high concentration (2%), Michaelis-Menten constant (Km), maximum velocity (Vmax), and intrinsic clearance (CLint) for the formation of the hydrolyzed product were decreased (∼40%). The use of deuterated ethanol allowed more mechanistic investigations of the transesterification mechanism and showed that the intrinsic clearance based on parent loss was not impaired in the presence of alcohol. Overall, our data demonstrate that CDP323 is mainly hydrolyzed by hCES1 and is prone to transesterification in the presence of ethanol. Transesterification mechanisms compete with hydrolysis without impairing the overall clearance of the ester prodrug. Based on in vitro results, the risk of a clinically significant drug-drug interaction with ethanol is anticipated to be low.
我们确定了参与水解乙基酯前药 CDP323(C28H29BrN403)的酶,并在存在乙醇的情况下对其进行了转酯化作用进行了研究,特别强调了药物相互作用的风险。使用人肝和肠微粒体以及重组人羧酸酯酶(hCES1 和 2)在体外评估了 CDP323 的水解作用,结果表明与肠微粒体相比,人肝微粒体中的水解作用大约高出 20 倍,与 hCES2 相比,hCES1 中的水解作用更高。羧酸酯酶的非特异性抑制剂可显著抑制 CDP323 的水解(>80%抑制),而 CES2、乙酰胆碱酯酶、芳基酯酶和丁酰胆碱酯酶的特异性抑制剂则不会损害水解反应。还研究了乙醇对水解动力学参数的影响,结果表明在高浓度(2%)下,形成水解产物的米氏常数(Km)、最大速度(Vmax)和内在清除率(CLint)降低(约 40%)。使用氘代乙醇可以更深入地研究转酯化机制,并表明在存在酒精的情况下,基于母体损失的内在清除率没有受损。总体而言,我们的数据表明 CDP323 主要由 hCES1 水解,并且在乙醇存在下容易发生转酯化。转酯化机制与水解竞争而不损害酯前药的总体清除率。基于体外结果,预计与乙醇发生临床意义重大的药物相互作用的风险较低。