Suppr超能文献

纤维增强复合材料固定义齿,带有各种桥体。

Fiber-reinforced composite fixed dental prostheses with various pontics.

出版信息

J Adhes Dent. 2014 Apr;16(2):161-8. doi: 10.3290/j.jad.a30755.

Abstract

PURPOSE

To evaluate the load-bearing capacities of fiber-reinforced composite (FRC) fixed dental prostheses (FDP) with pontics of various materials and thicknesses.

MATERIALS AND METHODS

Inlay preparations for retaining FDPs were made in a polymer phantom model. Seventy-two FDPs with frameworks made of continuous unidirectional glass fibers (everStick C&B) were fabricated. Three different pontic materials were used: glass ceramics, polymer denture teeth, and composite resin. The FDPs were divided into 3 categories based on the occlusal thicknesses of the pontics (2.5 mm, 3.2 mm, and 4.0 mm). The framework's vertical positioning varied respectively. Each pontic material category contained 3 groups (n = 8/group). In group 1, pontics were fabricated conventionally with composite resin (G-ӕnial, GC) with one additional transversal fiber reinforcement. In group 2, the pontics were polymer denture teeth (Heraeus- Kulzer). Group 3 had an IPS-Empress CAD pontic (Ivoclar Vivadent) milled using a Cerec CAD/CAM unit. Groups 1 and 2 served as controls. Each FDP was statically loaded from the pontic until initial fracture (IF) and final fracture (FF). Initial-fracture data were collected from the load-deflection graph.

RESULTS

ANOVA indicated statistically significant differences between the materials and occlusal thicknesses (p < 0.001). Quadratic analysis demonstrated the highest correlation between the thickness of the pontic and IF and FF values with ceramic pontics (IF: p < 0.001; R2 = 0.880; FF: p < 0.001; R2 = 0.953).

CONCLUSION

By increasing the occlusal thickness of the pontic, the load-bearing capacity of the FRC FDPs may be increased. The highest load-bearing capacity was obtained with 4.0 mm thickness in the ceramic pontic. However, with thinner pontics, polymer denture teeth and composite pontics resulted in higher load-bearing values.

摘要

目的

评估不同材料和厚度桥体的纤维增强复合(FRC)固定义齿(FDP)的承载能力。

材料和方法

在聚合物模型中制作嵌体预备体,以制造 FDP 的框架。制作了 72 个由连续单向玻璃纤维(everStick C&B)制成的 FDP。使用三种不同的桥体材料:玻璃陶瓷、聚合体义齿牙和复合树脂。根据桥体的咬合厚度(2.5mm、3.2mm 和 4.0mm)将 FDP 分为 3 类。框架的垂直位置分别变化。每个桥体材料类别包含 3 个组(n=8/组)。在第 1 组中,桥体用复合树脂(GC)常规制作,并用一根额外的横向纤维增强。在第 2 组中,桥体是聚合体义齿牙(贺利氏古莎)。第 3 组是用 Cerec CAD/CAM 单位铣削的 IPS-Empress CAD 桥体(义获嘉伟瓦登特)。第 1 组和第 2 组作为对照。从桥体处对每个 FDP 进行静态加载,直到初始断裂(IF)和最终断裂(FF)。初始断裂数据从负载-挠度图中收集。

结果

方差分析表明材料和咬合厚度之间存在统计学显著差异(p<0.001)。二次分析表明,桥体厚度与 IF 和 FF 值与陶瓷桥体之间具有最高的相关性(IF:p<0.001;R2=0.880;FF:p<0.001;R2=0.953)。

结论

通过增加桥体的咬合厚度,可以提高 FRC FDP 的承载能力。在陶瓷桥体中,4.0mm 厚度时获得了最高的承载能力。然而,对于更薄的桥体,聚合体义齿牙和复合桥体产生了更高的承载值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验