Suppr超能文献

五种超声形态评分系统对恶性卵巢肿瘤诊断的比较。

Comparison of the five sonographic morphology scoring systems for the diagnosis of malignant ovarian tumors.

机构信息

Department of Obstetrics and Gynecology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand.

出版信息

Gynecol Obstet Invest. 2013;76(4):248-53. doi: 10.1159/000355563. Epub 2013 Oct 26.

Abstract

OBJECTIVE

To evaluate the accuracy of the 5 sonographic morphology scoring (SMS) systems (Sassone, DePriest, Lerner, Vera and Kawai and Valentin) for prediction of malignant ovarian tumors.

METHODS

A diagnostic study was conducted at Songklanagarind Hospital during November 2008 to June 2009. All of the patients scheduled for elective surgery due to ovarian tumors underwent transabdominal or transvaginal sonography within 72 h before the operation. The pictures were recorded. Attention was given to volume, wall and septal thickness, locularity, echogenicity, and papillary and internal surface of the tumor. The 5 SMS systems were applied later by the first author, who was not aware of the clinical data. The final diagnosis was determined by a histopathological report and was categorized into benign or malignant ovarian tumor. Borderline tumors were included in the malignant group.

RESULTS

One hundred and forty-six patients were recruited; 82 benign (56.2%), 14 borderline (9.6%), and 50 malignant tumors (34.2%). The sensitivities of the SMS by Sassone, DePriest, Lerner, Vera and Kawai and Valentin were 75, 89.1, 82.8, 79.7 and 82.8% and the specificities were 79.3, 73.2, 68.3, 82.9 and 85.4%, respectively.

CONCLUSIONS

Among the 5 systems, the DePriest system is the most sensitive SMS for the prediction of ovarian cancer.

摘要

目的

评估 5 种超声形态评分(SMS)系统(Sassone、DePriest、Lerner、Vera 和 Kawai 以及 Valentin)预测恶性卵巢肿瘤的准确性。

方法

2008 年 11 月至 2009 年 6 月,在宋卡王子大学医院进行了一项诊断性研究。所有因卵巢肿瘤而计划接受择期手术的患者均在手术前 72 小时内接受经腹或经阴道超声检查。记录图像。注意肿瘤的体积、壁和隔厚度、分房、回声性、乳头状和内部表面。5 种 SMS 系统由第一作者在不知道临床数据的情况下进行评估。最终诊断通过组织病理学报告确定,并分为良性或恶性卵巢肿瘤。交界性肿瘤归入恶性组。

结果

共招募了 146 名患者;其中良性肿瘤 82 例(56.2%)、交界性肿瘤 14 例(9.6%)、恶性肿瘤 50 例(34.2%)。Sassone、DePriest、Lerner、Vera 和 Kawai 以及 Valentin 的 SMS 灵敏度分别为 75%、89.1%、82.8%、79.7%和 82.8%,特异性分别为 79.3%、73.2%、68.3%、82.9%和 85.4%。

结论

在 5 种系统中,DePriest 系统是预测卵巢癌最敏感的 SMS。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验